
SPCT6100 Application Development
Guide

Version 1.0

Sunplus Core Tech SPCT6100 Linux Team

SPCT6100 Application Development Guide: Version 1.0
by Sunplus Core Tech SPCT6100 Linux Team

Copyright © 2009-2010 Sunplus Core Technology. Ltd

This document is copyrighted © 2009-2010 by Sunplus Core Technology. Ltd.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no

Back-Cover Texts. A copy of the license is included in the appendix entitled "GNU Free Documentation License".

Programming examples can be used and distributed without restrictions.

Revision History

Revision 1.0 2010-02-22 Revised by: Sunplus Core Technology
Original Version

Table of Contents
Introduction... v
1. Getting Started.. 1
2. Live Path Data Accessing ... 2

2.1. Opening The Device .. 2
2.2. Change Device Properity ... 3
2.3. Streaming IO .. 4
2.4. Memory Mapping .. 6
2.5. Live Data Accessing... 7

3. Variable length Data Accessing ... 10
3.1. Separate H.264, Audio, Motion ... 10
3.2. H.264 Data Accessing.. 14
3.3. Motion Detection Bitmap... 15
3.4. Audio Data Accessing.. 15

4. Card Properity .. 16
4.1. Set The Properity ... 16
4.2. Get The Properity... 21
4.3. Example ... 21

5. Multicard Accessing ... 23
I. Function Reference ... 24

ioctl VIDIOC_ENUM_FMT... 25
ioctl VIDIOC_ENUMINPUT ... 27
ioctl VIDIOC_ENUMSTD ... 29
ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL ... 31
ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT.. 33
ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT .. 36
ioctl VIDIOC_G_STD, VIDIOC_S_STD .. 38
ioctl VIDIOC_QBUF, VIDIOC_DQBUF... 39
ioctl VIDIOC_QUERYBUF ... 41
ioctl VIDIOC_QUERYCAP ... 43
ioctl VIDIOC_QUERYCTRL... 45
ioctl VIDIOC_QUERYSTD.. 48
ioctl VIDIOC_REQBUFS... 50
ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF ... 52

A. Demos.. 54
B. Audio Decoding .. 55

iii

List of Examples
3-1. spct6100-v4l2-compress.c... 14
4-1. spct6100-set-brightness.c .. 21

iv

Introduction
SPCT6100 EVB Board is a powerful video capturing card dedicated to security field. With a PAC
DSP inside, it can compress 1 channel live data with D1 resolution to H.264 format, or 4 channels
with CIF resolution, at the framerate of 30fps for NTSC, while 25 fps for PAL.

SPCT6100 EVB Board can work on both Linux and Windows. On Linux, our device driver is V4L2
compatible, so that those free software based on V4L2 can access SPCT6100 EVB Board directly or
with minor modification, such as ffmpeg/ffserver/vlc/gstreamer. While on windows, DirectShow
interface is used.

This document gives you introduction about how to development application for SPCT6100 using
V4L2 interface on Linux

For inquiries about this document contact Sunplus Core Technology.

v

Chapter 1. Getting Started
Welcome to SPCT6100 Application Development Guide! In this document, you will acquire a
comprehensive understanding of how to write applications for SPCT6100 using V4L2 interface.

First, let’s have an overview of SPCT6100 video capturing system. SPCT6100 Video Capture Card
is PCI hosted, so you can plug it into any pci slot. This card has four anolog video inputs, with a PAC
DSP as its strong heart, it can compress raw data produced by this four anolog inputs into H.264
format, many disk spaces thus can be saved. This card transfers data using DMA, every time raw
data or compressed data is DMAed to your host memory, driver will inform your applications, you
can then do some processing on those data.

To develope basic applications for SPCT6100, we assume you are familiar with the following skills:

• C language

• Linux build system (toolchain, make etc.)

• Linux system call (open, ioctl, mmap etc.)

Now, let’s begin our SPCT6100 traval!

1

Chapter 2. Live Path Data Accessing
In Chapter 1, you were given an overview of the SPCT6100 video capturing system. In this chapter,
you’ll learn how to write your own SPCT6100 applications.

SPCT6100 supports two YUV formats, YUV422 and YUV420P. When there is only one card, live
path data is YUV422 while YUV420P when >= two cards. You can not change this in application
layer, driver will detect card number to decide which yuv format should be send to user space

Suppose only one card has been pulgged in PCI slot and we want to save 100 frames raw YUV422
data of channel 0 into a local file, let’s start coding (you can get all source code in demo package
released with this doc).

Generally speaking, every SPCT6100 application should have the following framework.

• Opening the device

• Setting device properties, such as video standard, resolution, picture brightness etc.

• The actual input/output loop

• Closing the device

2.1. Opening The Device
Every SPCT6100 video capturing card will be registered as two devices in the system. One for live
path, the other for compress path. Device registering process is handled by v4l2 kernel module, they
will both have the major device number ’81’ and two consistant minor device numbers. Suppose the
only v4l2 device on your system is SPCT6100, then the device name of live path and compress path
will be "/dev/video0" and "/dev/video1", 0 and 1 is there minor number.

Now, we know what the device name should be. We want to get live path raw data, so we should
open "/dev/video0".

/*
* spct6100-v4l2-live.c

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ioctl.h>

#include <sys/stat.h>

#include <sys/poll.h>

#include <sys/mman.h>

#include <errno.h>

#include <fcntl.h>

#include <linux/videodev2.h>

#include <spct6100.h>

#define CLEAR(x) memset (&(x), 0, sizeof (x))

int fd;

2

Chapter 2. Live Path Data Accessing

int totalframes;
struct buffer
{
void *start;
size_t length;

};
struct buffer *buffers = NULL;
FILE *output = NULL;
void save_one_frame_yuv (void *addr);
void process_data (void);

static void
errno_exit (const char *s)
{
fprintf (stderr, "%s error %d, %s\n", s, errno, strerror (errno));
exit (EXIT_FAILURE);

}

int
main (int argc, char **argv)
{
int index;
int n = 0;
unsigned int i;
struct pollfd pfd;
struct v4l2_input input;
enum v4l2_buf_type type;
struct v4l2_control change_mode;
struct v4l2_control change_resolution;
struct v4l2_requestbuffers reqbuf;

fd = open ("/dev/video0", O_RDWR | O_SYNC);
if (fd < 0) {

printf ("Open device failed\n");
}

Now, we have got the file handler, we can operate on the live path device through this handler.

2.2. Change Device Properity
When a SPCT6100 video processing card start working, it works on a deafult setting, including
video standard, resolution etc. So your application should change them to what you wanted.

In this example, we want the card to work on NTSC mode.

change_mode.id = V4L2_CID_MODE;
change_mode.value = 1; // 0: PAL, 1: NTSC

for (index = 0; index < 4; index++) {

if (-1 == ioctl (fd, VIDIOC_S_INPUT, &index)) {

perror ("VIDIOC_S_INPUT");
exit (EXIT_FAILURE);

3

Chapter 2. Live Path Data Accessing

}

if (-1 == ioctl (fd, VIDIOC_S_CTRL, &change_mode)) {

perror ("VIDIOC_S_CTRL");
exit (EXIT_FAILURE);

}
}

Note: for SPCT6100, different channel can have different value on the same properity. So, every
time you want to set the properity of a specified channel, you should using VIDIOC_S_INPUT. To
here, we have make the card work as we needed, we can begin to save data.

2.3. Streaming IO
Streaming is an I/O method where only pointers to buffers are exchanged between application and
driver, the data itself is not copied. Memory mapping is primarily intended to map buffers in device
memory into the application’s address space. Device memory can be for example the video memory
on a graphics card with a video capture add-on. However, being the most efficient I/O method
available for a long time, many other drivers support streaming as well, allocating buffers in
DMA-able main memory.

A driver can support many sets of buffers. Each set is identified by a unique buffer type value. The
sets are independent and each set can hold a different type of data. To access different sets at the
same time different file descriptors must be used.

To use streaming io(Memory Mapping) you should do the following step:

Step 1: Get the number of supported device buffers. Call the VIDIOC_REQBUFS ioctl with the
desired number of buffers and buffer type(for SPCT6100 it should always be
V4L2_BUF_TYPE_VIDEO_CAPTURE). If the number you requested is not supported, driver will
change that number to the correct one.

Step 2: Memory Map and initialize all buffers. Before applications can access the buffers they must
map them into their address space with the mmap function. The location of the buffers in device
memory can be determined with the VIDIOC_QUERYBUF ioctl. The m.offset and length returned
in a struct v4l2_buffer are passed as sixth and second parameter to the mmap() funciton. the offset
and length values must not be modified. VIDIOC_QBUF ioctl should be called later to initialize all
buffers. Remember the buffers are allocated in physical memory, as opposed to virtual memory
which can be swapped out to disk. Applications should free the buffers as soon as possible with the
munmap function.

Step 3: Make the buffer queues working. After memory mapping all buffers, you could inform the
driver to begin fill data into these buffers with the VIDIOC_STREAMON ioctl with the desired buffer
type(V4L2_BUF_TYPE_VIDEO_CAPTURE).

Step 4: Processing data. After the first three steps, data will be continusly filled into buffers, driver
are now data producer, your application should be data consumer. Using VIDIOC_DQBUF ioctl you
can determine which buffer has data now, and process data in this buffer. When finishing data
processing, you should using VIDIOC_QBUF to mask this buffer empty, so that data can be filled into
it again.

Step 5: Make the buffer queues stop working. Whenever your application do not need data ever, you
should inform driver to stop fill data into these buffers using VIDIOC_STREAMOFF ioctl.

Code for this part is listed below.

4

Chapter 2. Live Path Data Accessing

/*** Step 1 Start ***/
memset (&reqbuf, 0, sizeof (reqbuf));
reqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
reqbuf.memory = V4L2_MEMORY_MMAP;
reqbuf.count = 12;

if (-1 == ioctl (fd, VIDIOC_REQBUFS, &reqbuf)) {
if (errno == EINVAL)

printf ("Video capturing or mmap-streaming is not supported\n");
else

perror ("VIDIOC_REQBUFS");

exit (EXIT_FAILURE);
}
/*** Step 1 End ***/

/*** Step 2 Start ***/
buffers = calloc (reqbuf.count, sizeof (*buffers));

// Memory Mapping
for (i = 0; i < reqbuf.count; i++) {

struct v4l2_buffer buffer;

memset (&buffer, 0, sizeof (buffer));
buffer.type = reqbuf.type;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.index = i;

if (-1 == ioctl (fd, VIDIOC_QUERYBUF, &buffer)) {
perror ("VIDIOC_QUERYBUF");
exit (EXIT_FAILURE);

}

buffers[i].length = buffer.length; /* remember for munmap() */

buffers[i].start = mmap (NULL, buffer.length,
PROT_READ | PROT_WRITE, /* recommended */
MAP_SHARED, /* recommended */
fd, buffer.m.offset);

if (MAP_FAILED == buffers[i].start) {
/* If you do not exit here you should unmap() and free()

the buffers mapped so far. */
perror ("mmap");
exit (EXIT_FAILURE);

}
}

// Initialize all buffers ***/
for (index = 0; index < reqbuf.count; index++) {

struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = index;
if (-1 == ioctl(fd, VIDIOC_QBUF, &buf))

5

Chapter 2. Live Path Data Accessing

errno_exit("VIDIOC_QBUF");
}

/*** Step 2 End ***/

/*** Step 3 Start ***/

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == ioctl(fd, VIDIOC_STREAMON, &type))
errno_exit("VIDIOC_STREAMON");

/*** Step 3 End ***/

2.4. Memory Mapping
Using the upper code, we have establish a whole memory maping system, through which we can
access the DMA memory in user space directly.

Memory mapping for SPCT6100 system can be described in the following map:

------------- Host Memory
| | | | | Low
| Application | | | |
| | | | |
------------- | | |
| | | V High
| | |
| |------------| <--- offset:A
V | | length:l

Step 1: | Buffer 0 |
VIDIOC-REQBUFS |------------| <--- offset:B
Driver will return buffer | | length:m
number in host memory to | Buffer 1 |
application, in this example, 3 |------------| <--- offset:C

| | length:n
| Buffer 2 |

Step 2: |------------|
VIDIOC-QUERYBUF | |
Driver will return |....... |
the physical offset and length | |
of every buffer to application | |
application. In this example,
when application query buffer 0
offset A, length l will be
returned, while B, m for buffer
1, and C, n for buffer 2

Step 3:
Application using mmap system
call with information getting
from Step 2 as parameter to
establish a mapping from user

6

Chapter 2. Live Path Data Accessing

space to physical memory.

the structure buffers will record
all those user space information,
so you can using them later.

2.5. Live Data Accessing
Up to now, the data queue has been established and driver has began to fill data into those buffer.
Then how should you get informed when data is ready? using poll.

output = fopen("data.yuv", "wb");

pfd.fd = fd;
pfd.events = POLLIN;
while(1) {

n= poll(&pfd, 1, -1);
if(n < 0) {

break;
} else {

process_data();
if(totalframes >= 100)
break;

}
}

type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (-1 == ioctl(fd, VIDIOC_STREAMOFF, &type))
errno_exit("VIDIOC_STREAMOFF");

fclose(output);
close(fd);

} // End of main

When the system call poll is called, the process will be blocked until driver informed the process
that some buffers have data ready to be processed. After processing the data, process should call poll
again to wait for the next time driver inform.

Then how should we process those data ready buffer ? Let’s continue.

void process_data(void)
{
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
if (-1 == ioctl (fd, VIDIOC_DQBUF, &buf))
errno_exit("VIDIOC_DQBUF");

save_one_frame_yuv(buf);
if (-1 == ioctl (fd, VIDIOC_QBUF, &buf))
errno_exit("VIDIOC_QBUF");

}

7

Chapter 2. Live Path Data Accessing

To process the data-ready buffer, you should first get them from the data queue using
VIDIOC_DQBUF, driver pass many information to the process through those fields in the structure
you has passed when calling VIDIOC_DQBUF. Using those information, the process can know the
address, length, properity of the data, then some processing can be done. After all this,
VIDIOC_QBUF should be called to inform driver that these buffer is empty again and data can be
refilled to them.

Here comes the finally section, how can we know the address, length, properity etc of the data ?

void save_one_frame_yuv(struct v4l2_buffer buf)
{
int buf_index, ch;

for (ch = 0; ch < 4; ch++) {
buf_index = (buf.index >> (ch*8)) & 0xFF;
if (ch != 2 || buf_index == 0xFF) {
continue;

}

fwrite(buffers[buf_index].start, buf.length, 1, output);
totalframes++;

}
}

We assume that you know meanings of those fields in struct v4l2_buffer, or please see v4l2
specification from the website first. For live path, driver will pass information to user space in the
following format: (only two fields are used for live path)

struct v4l2_buffer {
......
unsigned int index;

|
|
v

bit 31 bit 24 bit 16 bit 8 bit 0
| | | | |
V V V V V

| ch 3 | ch 2 | ch 1 | ch 0 |
| index | index | index | index |

if index == 0xFF
there is no data for this channel

if index != 0xFF {
there is data for this channel
data address in user space

= your previous mmap array [index]
}

......
unsigned int length;

|
|
V
Length of the data, for NTSC/CIF/YUV422,

8

Chapter 2. Live Path Data Accessing

driver will filled this with 352*288*2
};

Everytime driver wakes up user space process, information about every channel will be recorded on
these fields. If the user space process does not care about some of them, like this example we only
care about data from channel 2, it can simply ignore those information.

Up to now, all the code have been listed. You can compile this file and run it.

In the following chapters, details about compress path data access will be given.

9

Chapter 3. Variable length Data Accessing

3.1. Separate H.264, Audio, Motion
Compressed H.264 data, ADPCM audio data, Motion detection bitmap are all variable length data,
packed in one packet and passed to user space through compress path. How can we separate them ?

Remember that in the previous section, when VIDIOC_DQBUF is called, driver will fill some
information in those fields VIDIOC_DQBUF passed down. For live path (/dev/video0), only two fields
are used(index/length), for compress path (/dev/video1), the meaning of the field ’length’ has been
changed

struct v4l2_buffer {
......
unsigned int index;

|
|
v

bit 31 bit 24 bit 16 bit 8 bit 0
| | | | |
V V V V V

| ch 3 | ch 2 | ch 1 | ch 0 |
| index | index | index | index |

if index == 0xFF
there is no data for this channel

if index != 0xFF {
there is data for this channel
data address in user space

= your previous mmap array [index]

}

unsigned int length;
|
|
v

bit 31 bit 24 bit 16 bit 8 bit 0
| | | | |
V V V V V

| ch 3 | ch 2 | ch 1 | ch 0 |
| subnum | subnum | subnum | subnum |

Here, to understand the word ’subnum’, detailed information about
compress path packet must be introduced.

Every compress path packet have ’subnum’ subpackets, so the packet

10

Chapter 3. Variable length Data Accessing

has the following structure:

------------------- -
| |
| AVHEADER |
MOTION BITMAP
------------------- \ subpacket 0
/
VIDEO DATA

AUDIO DATA
------------------- -
AVHEADER

\ subpacket 1
MOTION BITMAP /

what’s the offset and length of motion/video/audio in each subpacket?
see AVHEADER.

typedef struct {
u32 AVH_uReserved0 // 0x00

u32 AVH_uTotalDataSize; // 0x04
total Data length of this subpacket
with this header included.

u32 AVH_uReserved1; // 0x08

u32 AVH_uFrameType; // 0x0C
video frame type
0 ~ I frame
2 ~ P frame
3 ~ B frame

u32 AVH_uVideoTimeStamp; // 0x10
video frame time stamp
the unit is 1/32768 second

Note: this field is 32 bits, so
you must pay attention to counter
overflow.

u32 AVH_uVideoDataLen; // 0x14
video frame data length

11

Chapter 3. Variable length Data Accessing

u32 AVH_uAudioDataLen; // 0x18
audio frame data length

u32 AVH_uSpsLen; // 0x1C
sps header length

u32 AVH_uVideoDataAddrOffset; // 0x20
video frame data offset in subpacket

u32 AVH_uAudioDataAddrOffset; // 0x24
audio frame data offset in subpacket

u32 AVH_uReserved2; // 0x28

u8 AVH_uReserved3; // 0x2C

u8 AVH_Func_Motion_En; // 0x2D
motion detection unit status

u8 AVH_Func_Encode_En; // 0x2E
video encoder unit status

u8 AVH_Func_AudioEncode_En; // 0x2F
audio encoder unit status

u32 AVH_uVideoLost; // 0x30
video lost status
0 ~ no video lost
1 ~ video lost

u32 AVH_uMotionDataLen; // 0x34
motion detection bitmap length

u32 AVH_uAudioTimeStamp; // 0x38
audio frame time stamp
the unit is 1/32768 second also

u8 AVH_uReserved4[88 - 0x3c];
} __attribute__((packed)) DMAVHEADER, *PDMAVHEADER;

everytime you VIDIOC_DQBUF a compress path packet, you can using the
following process logic:

int buf_index = v4l2_buf.index;
int buf_len = v4l2_buf.length;
int index, subpacket_num
int channel_index, subpacket_index;
unsigned char *cur_addr = NULL;

for (channel_index = 0; channel_index < 4; channel_index++) {

index = buf_index & 0xff;
subpacket_num = buf_len & 0xff;
buf_index >>= 8;
buf_len >>= 8;

/* suppose we only process data from channel 2 */

12

Chapter 3. Variable length Data Accessing

if (channel_index == 2 && index != 0xff) {
cur_addr = buffers[index].start;
for (subpacket_index = 0;

subpacket_index < subpacket_num;
subpacket_index++) {

if (PACKET_WITH_VIDEO(cur_addr)) {
video_data_address =

mmap_addr[index].start + AV_VOFFSET(cur_addr);
video_data_length = AV_VLEN(cur_addr);

do_video_process(video_data_address,
video_data_length);

}

if (PACKET_WITH_AUDIO(cur_addr)) {
audio_data_address =

mmap_addr[index].start + AV_AOFFSET(cur_addr);
audio_data_length = AV_ALEN(cur_addr);

do_audio_process(audio_data_address,
audio_data_length);

}

if (PACKET_WITH_MOTION(cur_addr)) {
motion_bitmap_address =

mmap_addr[index].start + sizeof(DMAVHEADER);
motion_bitmap_length = 72; // bitmap has fixed length
do_motion_process(motion_bitmap_address,

motion_bitmap_length);
}

if (PACKET_WITH_VIDEOLOST(cur_addr)) {
do_videolost_process();

}

// update cur_addr to the next subpacket
cur_addr+=AV_TOTAL(cur_addr);

}
}

}

all these help macros:

AV_TOTAL
AV_ALEN
AV_AOFFSET
AV_VLEN
AV_VOFFSET
PACKET_WITH_VIDEO
PACKET_WITH_AUDIO
PACKET_WITH_MOTION
PACKET_WITH_VIDEOLOST

can be found in spct6100 sdk development header file ’spct6100.h’

13

Chapter 3. Variable length Data Accessing

Now, with knowledge getting from the previous chapter and information from the upper structure,
you know whether it is H.264 data or audio data or motion detection bitmap, you also know where to
get the data and the length of the data, you surely can process variable length data now!

3.2. H.264 Data Accessing
Only minor difference exists beteen H.264 and live yuv data accessing, when access H.264 data we
should analyze those extra fields of struct v4l2_buffer. This time we want to save 100 frame
H.264 data from channel 2, just modify the function save_one_frame_yuv in
spct6100-v4l2-live.c, and the device to open should be changed from ’/dev/video0’ to ’/dev/video1’
and output file name to ’data.264’ then everything will OK! For full code list, please see
spct6100-v4l2-compress.c in demos package

Example 3-1. spct6100-v4l2-compress.c

... ...

/*Here we change the function name from

save_one_frame_yuv
to

save_one_frame_H264 */

void save_one_frame_H264(struct v4l2_buffer buf)
{
int buf_index = buf.index;
int buf_len = buf.length;
int index, subpacket_num, channel_index, subpacket_index;
unsigned char *cur_addr = NULL;
for (channel_index = 0; channel_index < 4; channel_index++) {
index = buf_index & 0xff;
subpacket_num = buf_len & 0xff;
buf_index >>= 8;
buf_len >>= 8;

/* We only process data from channel 2 */

if (channel_index == 2 && index != 0xff) {
cur_addr = buffers[index].start;
for (subpacket_index = 0; subpacket_index < subpacket_num; subpacket_index++) {
if (!PACKET_WITH_VIDEO(cur_addr)) {
cur_addr+=AV_TOTAL(cur_addr);
continue;

}
if (PACKET_IS_ISPSFRAME(cur_addr))
got_sps = 1;

if (got_sps) {
printf("Save video frame %d\n", totalframes);
fwrite(cur_addr + AV_VOFFSET(cur_addr), AV_VLEN(cur_addr), 1, output);
totalframes++;

}
cur_addr+=AV_TOTAL(cur_addr);

}

14

Chapter 3. Variable length Data Accessing

}
}

}

We only need to override data processing function, then everything will correct for compress path.

3.3. Motion Detection Bitmap
SPCT6100, with DSP inside, can do some software processing on the data, such as motion detection.
Driver will send you motion detection results through compress path.

In the code above, if PACKET_WITH_MOTION(subpacket_address) is true, then the data has
motion detection result. Instead of writing the results to file, you should do some analysis on the
results.

When detect motions, SPCT6100 see the screen as many 32x32 basic blocks. If any basic block has
motion detected then driver will send you the results in the following format:

buffers[index].start+offset
= continous eight 4 bytes(32 bits)

|< ------- 352 ---------->|
-------------------------------- - bit 31 - bit 11 bit 0

| | | | | | | | | | | | ^ | | |
-------------------------------- | | | |

| | | | | | | | | | | | | V V V
-------------------------------- | --------------------------------

| | | | | | | | | | | | | | Reserved | | | | | | | | | | | |
-------------------------------- --------------------------------

| | | | | | | | | | | | ^
-------------------------------- 240 |

| | | | | | | | | | | | |
-------------------------------- 1: basic block motion detected

| | | | | | | | | | | | | 0: basic block without motion
-------------------------------- |

| | | | | | | | | | | | | Every 4 bytes corresponding to
-------------------------------- | one line. Because every line has

| | | | | | | | | | | | V only 11 basic blocks, so, only
-------------------------------- - the lower 11 bits are used.

The total size of bitmap is 72 bytes for
we support 4CIF resolution at most

3.4. Audio Data Accessing
Audio data has the format G.723, you can processing audio data as you like

By default audio was closed on the board, you can enable it using VIDIOC_S_CTRL with id equals
V4L2_CID_AUDIO

15

Chapter 4. Card Properity
Devices typically have a number of user-settable controls such as brightness, saturation and so on, so
does for SPCT6100 video capture card. SPCT6100 V4L2 Linux driver gives you ability to operate
nearly every settable properity of this card. You can change these properities to new value or reading
the current value of a specified properity of a specified channel.

4.1. Set The Properity
To set the specified properity of the card to new value, you should call ioctl with VIDIOC_S_CTRL

and a pointer to a struct v4l2_control struct as the second and third parameters. struct v4l2_control
has two field, you should set the id field to the corresponding id, and value field to the new value.

All controls are accessed using an ID value. V4L2 defines several IDs for specific purposes.
SPCT6100 also implement some other custom controls using V4L2_CID_PRIVATE_BASE and
higher values. The pre-defined and customed control IDs have the prefix V4L2_CID_. The ID is used
when querying the attributes of a control, and when getting or setting the current value. All
VIDIOC_S_CTRL should with the same parameter

struct v4l2_control {
unsigned int id;
unsigned int value;

};

//set color brightness
id = V4L2_CID_BRIGHTNESS
value: 0 ~ 255;
stage: any time
stage means when this ioctl can be used

//set color contrast
id = V4L2_CID_CONTRAST
value: 0 ~ 255
stage: any time

//set color saturation
id = V4L2_CID_SATURATION
value: 0 ~ 255
stage: any time

//set color hue
id = V4L2_CID_HUE
value: 0 ~ 255
stage: any time

//set video standard (NTSC/PAL)
id = V4L2_CID_MODE
value: 0 ~ NTSC

1 ~ PAL

16

Chapter 4. Card Properity

stage: before STREAMON

//live and compress status control
id = V4L2_CID_STATUS
value = 0 ~ close both live and compress path

1 ~ open compress path only
2 ~ open live path only
3 ~ open both live and compress path

stage: before STREAMON

//set live raw yuv frame resolution
id = V4L2_CID_LSHOWSIZE
value = 0 ~ 4CIF

1 ~ CIF
2 ~ QCIFF
3 ~ 2CIFF

stage: before STREAMON

//set compress H.264 frame resolution
id = V4L2_CID_CSHOWSIZE
value = 0 ~ 4CIF

1 ~ CIF
2 ~ QCIF
3 ~ 2CIF

stage: before STREAMON

//set fps
id = V4L2_CID_EENSPEED
value = 0 ~ 30
stage: anytime

//video lost control
id = V4L2_CID_VLOSTEN
value = 0 ~ disable video lost

1 ~ enable video lost
stage: any time

//enable or disable audio
id = V4L2_CID_AUDIO
value = 0 ~ disable audio

1 ~ enable audio
stage: before STREAMON

//request I frame with sps header
id = V4L2_CID_REQIFRAME
value = 0 ~ 3 specified channel request

4 all channel request
stage: anytime

//change H.264 frame interval
id = V4L2_CID_GOPSET

17

Chapter 4. Card Properity

value = pointer to struct spct6100_gopset

struct spct6100_gopset {
unsigned int gopp; // how many P frame between

// two I frame

unsigned int gopb; // how many B frame between
// two I frame

};
stage: anytime

//set H.264 encode parameter
id = V4L2_CID_EQUALITY
value = pointer to struct spct6100_eqset

struct spct6100_eqset {
unsigned int type; // 0 ~ CBR 2 ~ VBR

unsigned int minbitrate; // when type == 0, minbitrate
unsigned int maxbitrate; // and maxbitrate must be specified

unsigned int qpi;
unsigned int qpb; // when type == 2, qpi,qpb,qpp
unsigned int qpp; // must be specified

};
stage: anytime

//enable motion detection
id = V4L2_CID_MOTIONDETECT
value = 0 ~ disable motion detection

1 ~ enable motion detection
stage: anytime

//set motion detection threshold
//this setting should be followed by V4L2_CID_MOTIONDETECT
//with enable == 1 to make the change valid at once
id = V4L2_CID_MTHRESHOLD
value = new threshold value
stage: anytime

//set motion detection interval
//this setting should be followed by V4L2_CID_MOTIONDETECT
//with enable == 1 to make the change valid at once
id = V4L2_CID_MINTERVAL
value = new interval value
stage: anytime

//set screen osd
//currently, SPCT6100 allows a osd timer and a at most 15
//bytes string on the screen simutaneously.
//the osd timer will always on the top-left corner of the screen,
//while you can specifiy the position of the string

18

Chapter 4. Card Properity

id = V4L2_CID_OSDSET
value = pointer to struct spct6100_osdset

struct spct6100_osdset {
unsigned int tran; // the following 4 fields
unsigned int acolor; // are invalid now
unsigned int vscale;
unsigned int hscale;
unsigned int timer_enable; // 0 ~ don’t show osd timer

// 1 ~ show osd timer

unsigned int osd_enable; // 0 ~ disable the string
// 1 ~ enable the string

unsigned int osd_pos_x; // x position of the string
unsigned int osd_pos_y; // y position of the string
unsigned int str[16]; // string contents

};
stage: anytime

//set mosaic area
id = V4L2_CID_MOSAIC
value = pointer to struct spct6100_mosaic

struct spct6100_mosaic {
unsigned int num; // number of mosaic area

// SPCT6100 support at most 6

unsigned int x[6]; // x position of top-left corner
unsigned int y[6]; // y position of top-left corner
unsigned int w[6]; // width of each mosaic area
unsigned int h[6]; // height of each mosaic area

};
stage: anytime

//write eeprom through i square c bus
id = V4L2_CID_WI2C
value = pointer to struct spct6100_eeprom

struct spct6100_eeprom {
unsigned int deviceid; // device id, for eeprom, 0xa0
unsigned int addr; // address with eeprom address space
unsigned int length; // length of data
char *buf // data should be written

};
stage: anytime

//read eeprom through i square c bus
id = V4L2_CID_RI2C
value = pointer to struct spct6100_eeprom

struct spct6100_eeprom {
unsigned int deviceid; // device id, for eeprom, 0xa0
unsigned int addr; // address with eeprom address space
unsigned int length; // length of data

19

Chapter 4. Card Properity

char *buf // driver will fill data here
// application should malloc this space

};
stage: anytime

//set gpio direction
id = V4L2_CID_SGPIOD
value = pointer to struct spct6100_gpio

struct spct6100_gpio {
unsigned int pinid; // pin id;
void *value; // pointer to the direction

// 0 ~ out
// 1 ~ in

};
stage: anytime

//write gpio pin
id = V4L2_CID_WGPIO
value = pointer to struct spct6100_gpio

struct spct6100_gpio {
unsigned int pinid; // pin id;
void *value; // pointer to the value to write

};
stage: anytime

//read gpio pin
id = V4L2_CID_RGPIO
value = pointer to struct spct6100_gpio

struct spct6100_gpio {
unsigned int pinid; // pin id;
void *value; // driver will fill data to memory

// pointed to by value
};

stage: anytime

//enable watchdog
id = V4L2_CID_WATCHEN
value = 0 ~ disable

1 ~ enable
stage: anytime

//watchdog setting
id = V4L2_CID_WATCHSET
value = pointer to struct spct6100_watch

struct spct6100_watch {
unsigned int timeout; // timeout value

// period in second before reset
};

stage: anytime

20

Chapter 4. Card Properity

4.2. Get The Properity
To get the specified properity, things almost the same with that of setting, except that you should call
ioctl with VIDIOC_G_CTRL and need only to fill the id field, then driver will fill the value field to
the current value of the properity. If the value field of the corresponding VIDIOC_S_CTRL is a
pointer to a structure, then it also should be that in VIDIOC_G_CTRL.

4.3. Example
Suppose we want to change the brightness to 75, if it is now below 70. So we first should get the
current value, then decide what to do next.

Example 4-1. spct6100-set-brightness.c

#include <stdio.h>

#include <sys/types.h>

#include <sys/ioctl.h>

#include <sys/mman.h>

#include <sys/poll.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#include <errno.h>

#include <linux/videodev2.h>

#include <spct6100.h>

#define CLEAR(x) memset (&(x), 0, sizeof (x))

static void
errno_exit(const char *s)
{

fprintf(stderr, "%s error %d, %s\n", s, errno, strerror(errno));
exit(EXIT_FAILURE);

}

int main (int argc, char *argv[])
{
int err = 0;
int fd = -1;
int channelnum = 1;
struct v4l2_control brightness_control;

fd = open("/dev/video0", O_RDWR);
if (fd < 0) {

printf("Can not open SPCT6100 PCI device....\n");
exit(0);

}

if (-1 == ioctl(fd, VIDIOC_S_INPUT, &channelnum))
errno_exit("VIDIOC_S_INPUT");

CLEAR(brightness_control);
brightness_control.id = V4L2_CID_BRIGHTNESS;

21

Chapter 4. Card Properity

if (-1 == ioctl(fd, VIDIOC_QUERYCTRL, &brightness_control)) {

errno_exit("VIDIOC_QUERYCTRL");
}
else {

// You should check if this control is supported first.
if (brightness_control.flags & V4L2_CTRL_FLAG_DISABLED) {

errno_exit("This ID is not supported");
}

}

if (-1 == ioctl(fd, VIDIOC_G_CTRL, &brightness_control))
errno_exit("VIDIOC_G_CTRL");

else
printf("The current brightness of channel 1 is: %d\n", brightness_control.value);

if (brightness_control.value < 70) {

brightness_control.id = V4L2_CID_BRIGHTNESS;
brightness_control.value = 75;
if (-1 == ioctl(fd, VIDIOC_S_CTRL, &brightness_control))
errno_exit("VIDIOC_S_CTRL");

else
printf("Changing brightness of channel 1 success!\n");

return 0;
}

22

Chapter 5. Multicard Accessing
Some main board has several PCI slot, so you can plug two, three, four or even more SPCT6100
video capture card on your PC, our linux driver can support these card to work simutaneously.

When more than one card are plugged, every card will have a unique name. Suppose your PC has no
other video capture card plugged in, so the first SPCT6100 card will occupy device file /dev/video0
(Live Path) and /dev/video1 (Compress Path), the second will occupy /dev/video1 and /dev/video2,
then the third, the fourth and the more. You can open different device file to access different card.

Every card should have it’s own buffer queue, not shared with other cards. Every card can have there
own properity (brightness, contrast, etc).

In on word, you can use SPCT6100 video capture card to construct your 4, 8, 16, or even more
channels security system!

23

I. Function Reference

Table of Contents
ioctl VIDIOC_ENUM_FMT.. 25
ioctl VIDIOC_ENUMINPUT .. 27
ioctl VIDIOC_ENUMSTD ... 29
ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL... 31
ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT.. 33
ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT .. 36
ioctl VIDIOC_G_STD, VIDIOC_S_STD ... 38
ioctl VIDIOC_QBUF, VIDIOC_DQBUF.. 39
ioctl VIDIOC_QUERYBUF... 41
ioctl VIDIOC_QUERYCAP... 43
ioctl VIDIOC_QUERYCTRL.. 45
ioctl VIDIOC_QUERYSTD ... 48
ioctl VIDIOC_REQBUFS .. 50
ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF.. 52

ioctl VIDIOC_ENUM_FMT

Name
VIDIOC_ENUM_FMT — Enumerate image formats

Synopsis

int ioctl(int fd, int request, struct v4l2_fmtdesc *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_ENUM_FMT

argp

Description
To enumerate image formats applications initialize the type and index field of struct
v4l2_fmtdesc and call the VIDIOC_ENUM_FMT ioctl with a pointer to this structure. Drivers fill the
rest of the structure or return an EINVAL error code. All formats are enumerable by beginning at
index zero and incrementing by one until EINVAL is returned.

Table 1. struct v4l2_fmtdesc

__u32 index Number of the format in the enumeration, set by
the application. This is in no way related to the
pixelformat field.

enum v4l2_buf_type type Type of the data stream, set by the application.
For SPCT6100 it should be
V4L2_BUF_TYPE_VIDEO_CAPTURE.

__u32 flags

__u8 description[32] Description of the format, a NUL-terminated
ASCII string. This information is intended for
the user, for example: "YUV 4:2:2". Driver will
fill this field.

__u32 pixelformat The image format identifier. This is a four
character code as computed by the v4l2_fourcc
macro.

25

ioctl VIDIOC_ENUM_FMT

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. Image Format Description Flags

V4L2_FMT_FLAG_COMPRESSED 0x0001 This is a compressed format.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_fmtdesc type is not supported or the index is out of bounds.

26

ioctl VIDIOC_ENUMINPUT

Name
VIDIOC_ENUMINPUT — Enumerate video inputs

Synopsis

int ioctl(int fd, int request, struct v4l2_input *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_ENUMINPUT

argp

Description
To get the data or query the attributes of a specified video channel applications initialize the index
field of struct v4l2_input and call the VIDIOC_ENUMINPUT ioctl with a pointer to this structure.
Drivers fill the rest of the structure or return an EINVAL error code when the index is out of bounds.
To enumerate all inputs applications shall begin at index zero, incrementing by one until the driver
returns EINVAL.

Table 1. struct v4l2_input

__u32 index Identifies the input, set by the application.

__u8 name[32] Name of the video channel, a NUL-terminated
ASCII string, for example: "Card 0 Channel 2".
This information is intended for the user, filled
by the driver.

__u32 type Type of the input. For SPCT6100, always
V4L2_INPUT_TYPE_CAMERA.

v4l2_std_id std Every video input supports one or more different
video standards. This field is a set of all
supported standards.

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

27

ioctl VIDIOC_ENUMINPUT

Table 2. Input Types

V4L2_INPUT_TYPE_TUNER 1 This input uses a tuner (RF demodulator).

V4L2_INPUT_TYPE_CAMERA 2 Analog baseband input, for example CVBS /
Composite Video, S-Video, RGB.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_input index is out of bounds.

28

ioctl VIDIOC_ENUMSTD

Name
VIDIOC_ENUMSTD — Enumerate supported video standards

Synopsis

int ioctl(int fd, int request, struct v4l2_standard *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_ENUMSTD

argp

Description
To query the attributes of a video standard, especially a custom (driver defined) one, applications
initialize the index field of struct v4l2_standard and call the VIDIOC_ENUMSTD ioctl with a pointer
to this structure. Drivers fill the rest of the structure or return an EINVAL error code when the index
is out of bounds. To enumerate all standards applications shall begin at index zero, incrementing by
one until the driver returns EINVAL. Drivers may enumerate a different set of standards after
switching the video input or output.

Table 1. struct v4l2_standard

__u32 index Number of the video standard, set by the
application.

v4l2_std_id id For SPCT6100, V4L2_STD_NTSC_M or
V4L2_STD_PAL_M are returned

__u8 name[24] Name of the standard, a NUL-terminated ASCII
string, for example: "PAL-B/G", "NTSC Japan".
This information is intended for the user.

struct v4l2_fract frameperiod The frame period (not field period) is numerator
/ denominator. For example M/NTSC has a
frame period of 1001 / 30000 seconds.

__u32 framelines Total lines per frame including blanking, e. g.
625 for B/PAL.

29

ioctl VIDIOC_ENUMSTD

__u32 reserved[4] Reserved for future extensions. Drivers must set
the array to zero.

Table 2. struct v4l2_fract

__u32 numerator

__u32 denominator

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_standard index is out of bounds.

30

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

Name
VIDIOC_G_CTRL, VIDIOC_S_CTRL — Get or set the value of a control

Synopsis

int ioctl(int fd, int request, struct v4l2_control *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_G_CTRL, VIDIOC_S_CTRL

argp

Description
To get the current value of a control applications initialize the id field of a struct v4l2_control and
call the VIDIOC_G_CTRL ioctl with a pointer to this structure. To change the value of a control,
applications initialize the id and value fields of a struct v4l2_control and call the VIDIOC_S_CTRL
ioctl.

When the id is invalid drivers return an EINVAL error code. When the value is out of bounds
drivers can choose to take the closest valid value or return an ERANGE error code, whatever seems
more appropriate. However, VIDIOC_S_CTRL is a write-only ioctl, it does not return the actual new
value.

These ioctls work only with user controls.

Table 1. struct v4l2_control

__u32 id Identifies the control, set by the application.

__s32 value New value or current value.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

31

ioctl VIDIOC_G_CTRL, VIDIOC_S_CTRL

EINVAL

The struct v4l2_control id is invalid.

ERANGE

The struct v4l2_control value is out of bounds.

EBUSY

The control is temporarily not changeable, possibly because another applications took over
control of the device function this control belongs to.

32

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT,
VIDIOC_TRY_FMT

Name
VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT — Get or set the data format, try a
format

Synopsis

int ioctl(int fd, int request, struct v4l2_format *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

argp

Description
These ioctls are used to negotiate the format of data (typically image format) exchanged between
driver and application.

To query the current parameters applications set the type field of a struct v4l2_format to the
respective buffer (stream) type. For example video capture devices use
V4L2_BUF_TYPE_VIDEO_CAPTURE. When the application calls the VIDIOC_G_FMT ioctl with a
pointer to this structure the driver fills the respective member of the fmt union. In case of video
capture devices that is the struct v4l2_pix_format pix member. When the requested buffer type is
not supported drivers return an EINVAL error code.

To change the current format parameters applications initialize the type field and all fields of the
respective fmt union member. Good practice is to query the current parameters first, and to modify
only those parameters not suitable for the application. When the application calls the
VIDIOC_S_FMT ioctl with a pointer to a v4l2_format structure the driver checks and adjusts the
parameters against hardware abilities. Drivers should not return an error code unless the input is
ambiguous, this is a mechanism to fathom device capabilities and to approach parameters acceptable
for both the application and driver. On success the driver may program the hardware, allocate
resources and generally prepare for data exchange. Finally the VIDIOC_S_FMT ioctl returns the
current format parameters as VIDIOC_G_FMT does. Very simple, inflexible devices may even ignore
all input and always return the default parameters. However all V4L2 devices exchanging data with

33

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

the application must implement the VIDIOC_G_FMT and VIDIOC_S_FMT ioctl. When the requested
buffer type is not supported drivers return an EINVAL error code on a VIDIOC_S_FMT attempt.
When I/O is already in progress or the resource is not available for other reasons drivers return the
EBUSY error code.

The VIDIOC_TRY_FMT ioctl is equivalent to VIDIOC_S_FMT with one exception: it does not change
driver state. It can also be called at any time, never returning EBUSY. This function is provided to
negotiate parameters, to learn about hardware limitations, without disabling I/O or possibly time
consuming hardware preparations. Although strongly recommended drivers are not required to
implement this ioctl.

Table 1. struct v4l2_format

enum v4l2_buf_type type Type of the data
stream.

union fmt

struct v4l2_pix_format pix Definition of an image
format, used by video
capture and output
devices. (SPCT6100
use this field)

struct v4l2_window win Definition of an
overlaid image, used by
video overlay devices.

struct v4l2_vbi_format vbi Raw VBI capture or
output parameters.
Used by raw VBI
capture and output
devices.

struct
v4l2_sliced_vbi_format

sliced Sliced VBI capture or
output parameters.
Used by sliced VBI
capture and output
devices.

__u8 raw_data[200] Place holder for future
extensions and custom
(driver defined)
formats with type

V4L2_BUF_TYPE_PRIVATE

and higher.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EBUSY

The data format cannot be changed at this time, for example because I/O is already in progress.

34

ioctl VIDIOC_G_FMT, VIDIOC_S_FMT, VIDIOC_TRY_FMT

EINVAL

The struct v4l2_format type field is invalid, the requested buffer type not supported, or
VIDIOC_TRY_FMT was called and is not supported with this buffer type.

35

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

Name
VIDIOC_G_INPUT, VIDIOC_S_INPUT — Query or select the current video input channel

Synopsis

int ioctl(int fd, int request, int *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_G_INPUT, VIDIOC_S_INPUT

argp

Description
To query the current video input channel applications call the VIDIOC_G_INPUT ioctl with a pointer
to an integer where the driver stores the number of the input, as in the struct v4l2_input index field.
This ioctl will fail only when there are no video input channel, returning EINVAL.

To select a video input channel applications store the number of the desired channel in an integer and
call the VIDIOC_S_INPUT ioctl with a pointer to this integer. Side effects are possible. For example
inputs may support different video standards, so the driver may implicitly switch the current
standard. It is good practice to select an channel before querying or negotiating any other parameters.

Information about video input channel is available using the VIDIOC_ENUMINPUT ioctl.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The number of the video input is out of bounds, or there are no video inputs at all and this ioctl
is not supported.

36

ioctl VIDIOC_G_INPUT, VIDIOC_S_INPUT

EBUSY

I/O is in progress, the input cannot be switched.

37

ioctl VIDIOC_G_STD, VIDIOC_S_STD

Name
VIDIOC_G_STD, VIDIOC_S_STD — Query or select the video standard of the current input

Synopsis

int ioctl(int fd, int request, v4l2_std_id *argp);

int ioctl(int fd, int request, const v4l2_std_id *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_G_STD, VIDIOC_S_STD

argp

Description
To query and select the current video standard applications use the VIDIOC_G_STD and
VIDIOC_S_STD ioctls which take a pointer to a v4l2_std_id type as argument. VIDIOC_G_STD can
return a single flag or a set of flags as in struct v4l2_standard field id. The flags must be
unambiguous such that they appear in only one enumerated v4l2_standard structure.

VIDIOC_S_STD accepts one or more flags, being a write-only ioctl it does not return the actual new
standard as VIDIOC_G_STD does. When no flags are given or the current input does not support the
requested standard the driver returns an EINVAL error code. When the standard set is ambiguous
drivers may return EINVAL or choose any of the requested standards.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

This ioctl is not supported, or the VIDIOC_S_STD parameter was unsuitable.

38

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

Name
VIDIOC_QBUF, VIDIOC_DQBUF — Exchange a buffer with the driver

Synopsis

int ioctl(int fd, int request, struct v4l2_buffer *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_QBUF, VIDIOC_DQBUF

argp

Description
Applications call the VIDIOC_QBUF ioctl to enqueue an empty buffer in the driver’s incoming queue.
The semantics depend on the selected I/O method.

To enqueue a memory mapped buffer applications set the type field of a struct v4l2_buffer to the
same buffer type as previously struct v4l2_format type and struct v4l2_requestbuffers type, the
memory field to V4L2_MEMORY_MMAP and the index field. Valid index numbers range from zero to
the number of buffers allocated with VIDIOC_REQBUFS (struct v4l2_requestbuffers count) minus
one. The contents of the struct v4l2_buffer returned by a VIDIOC_QUERYBUF ioctl will do as well.

Applications call the VIDIOC_DQBUF ioctl to dequeue a filled buffer from the driver’s outgoing
queue. They just set the type and memory fields of a struct v4l2_buffer as above, when
VIDIOC_DQBUF is called with a pointer to this structure the driver fills the remaining fields or returns
an error code.

By default VIDIOC_DQBUF returns immediately with an EAGAIN error code when no buffer is
available.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

39

ioctl VIDIOC_QBUF, VIDIOC_DQBUF

EAGAIN

Non-blocking I/O has been selected using O_NONBLOCK and no buffer was in the outgoing
queue.

EINVAL

The buffer type is not supported, or the index is out of bounds, or no buffers have been
allocated yet, or the userptr or length are invalid.

ENOMEM

Not enough physical or virtual memory was available to enqueue a user pointer buffer.

EIO

VIDIOC_DQBUF failed due to an internal error. Can also indicate temporary problems like signal
loss. Note the driver might dequeue an (empty) buffer despite returning an error, or even stop
capturing.

40

ioctl VIDIOC_QUERYBUF

Name
VIDIOC_QUERYBUF — Query the status of a buffer

Synopsis

int ioctl(int fd, int request, struct v4l2_buffer *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_QUERYBUF

argp

Description
This ioctl is part of the memory mapping I/O method. It can be used to query the status of a buffer at
any time after buffers have been allocated with the VIDIOC_REQBUFS ioctl.

Applications set the type field of a struct v4l2_buffer to the same buffer type as previously struct
v4l2_format type and struct v4l2_requestbuffers type, and the index field. Valid index numbers
range from zero to the number of buffers allocated with VIDIOC_REQBUFS (struct
v4l2_requestbuffers count) minus one. After calling VIDIOC_QUERYBUF with a pointer to this
structure drivers return an error code or fill the rest of the structure.

In the flags field the V4L2_BUF_FLAG_MAPPED, V4L2_BUF_FLAG_QUEUED and
V4L2_BUF_FLAG_DONE flags will be valid. The memory field will be set to V4L2_MEMORY_MMAP,
the m.offset contains the offset of the buffer from the start of the device memory, the length field
its size. The driver may or may not set the remaining fields and flags, they are meaningless in this
context.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

41

ioctl VIDIOC_QUERYBUF

EINVAL

The buffer type is not supported, or the index is out of bounds.

42

ioctl VIDIOC_QUERYCAP

Name
VIDIOC_QUERYCAP — Query device capabilities

Synopsis

int ioctl(int fd, int request, struct v4l2_capability *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_QUERYCAP

argp

Description
All V4L2 devices support the VIDIOC_QUERYCAP ioctl. It is used to identify kernel devices
compatible with this specification and to obtain information about driver and hardware capabilities.
The ioctl takes a pointer to a struct v4l2_capability which is filled by the driver. When the driver is
not compatible with this specification the ioctl returns an EINVAL error code.

Table 1. struct v4l2_capability

__u8 driver[16] Name of the driver, a unique NUL-terminated
ASCII string. For example:
"SPCT6100-V4L2-L". Driver specific
applications can use this information to verify
the driver identity. It is also useful to work
around known bugs, or to identify drivers in
error reports. The driver version is stored in the
version field.

43

ioctl VIDIOC_QUERYCAP

__u8 card[32] Name of the device, a NUL-terminated ASCII
string. For example: "SPCT6100". One driver
may support different brands or models of video
hardware. This information is intended for users,
for example in a menu of available devices.
Since multiple TV cards of the same brand may
be installed which are supported by the same
driver, this name should be combined with the
character device file name (e. g. /dev/video2)
or the bus_info string to avoid ambiguities.

__u8 bus_info[32] Location of the device in the system, a
NUL-terminated ASCII string. For example:
"PCI Slot 4". This information is intended for
users, to distinguish multiple identical devices.
If no such information is available the field may
simply count the devices controlled by the
driver, or contain the empty string
(bus_info[0] = 0).

__u32 version Version number of the driver. Together with the
driver field this identifies a particular driver.
The version number is formatted using the
KERNEL_VERSION macro.

__u32 capabilities Device capabilities.

__u32 reserved[4] Reserved for future extensions. Drivers must set
this array to zero.

Table 2. Device Capabilities Flags

V4L2_CAP_VIDEO_CAPTURE 0x00000001The device supports the Video Capture interface.

V4L2_CAP_STREAMING 0x04000000The device supports the streaming I/O method. a

Notes:
a. This table only list those capability SPCT6100 focus on.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The device is not compatible with this specification.

44

ioctl VIDIOC_QUERYCTRL

Name
VIDIOC_QUERYCTRL — Enumerate controls items

Synopsis

int ioctl(int fd, int request, struct v4l2_queryctrl *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_QUERYCTRL

argp

Description
To query the attributes of a control applications set the id field of a struct v4l2_queryctrl and call
the VIDIOC_QUERYCTRL ioctl with a pointer to this structure. The driver fills the rest of the structure
or returns an EINVAL error code when the id is invalid.

It is possible to enumerate controls by calling VIDIOC_QUERYCTRL with successive id values
starting from V4L2_CID_BASE up to and exclusive V4L2_CID_BASE_LASTP1. Drivers may return
EINVAL if a control in this range is not supported. Further applications can enumerate private
controls, which are not defined in this specification, by starting at V4L2_CID_PRIVATE_BASE and
incrementing id until the driver returns EINVAL.

In both cases, when the driver sets the V4L2_CTRL_FLAG_DISABLED flag in the flags field this
control is permanently disabled and should be ignored by the application.1

When the application ORs id with V4L2_CTRL_FLAG_NEXT_CTRL the driver returns the next
supported control, or EINVAL if there is none. Drivers which do not support this flag yet always
return EINVAL.

Table 1. struct v4l2_queryctrl

45

ioctl VIDIOC_QUERYCTRL

__u32 id Identifies the control, set by the application.
When the ID is ORed with
V4L2_CTRL_FLAG_NEXT_CTRL the driver
clears the flag and returns the first control with a
higher ID. Drivers which do not support this flag
yet always return an EINVAL error code.

enum v4l2_ctrl_type type Type of control.

__u8 name[32] Name of the control, a NUL-terminated ASCII
string. This information is intended for the user.

__s32 minimum Minimum value, inclusive. This field gives a
lower bound for V4L2_CTRL_TYPE_INTEGER
controls. It may not be valid for any other type
of control, including
V4L2_CTRL_TYPE_INTEGER64 controls. Note
this is a signed value.

__s32 maximum Maximum value, inclusive. This field gives an
upper bound for V4L2_CTRL_TYPE_INTEGER
controls and the highest valid index for
V4L2_CTRL_TYPE_MENU controls. It may not be
valid for any other type of control, including
V4L2_CTRL_TYPE_INTEGER64 controls. Note
this is a signed value.

__s32 step This field gives a step size for
V4L2_CTRL_TYPE_INTEGER controls. It may
not be valid for any other type of control,
including V4L2_CTRL_TYPE_INTEGER64

controls.
Generally drivers should not scale hardware
control values. It may be necessary for example
when the name or id imply a particular unit
and the hardware actually accepts only
multiples of said unit. If so, drivers must take
care values are properly rounded when scaling,
such that errors will not accumulate on repeated
read-write cycles.

This field gives the smallest change of an
integer control actually affecting hardware.
Often the information is needed when the user
can change controls by keyboard or GUI
buttons, rather than a slider. When for example
a hardware register accepts values 0-511 and
the driver reports 0-65535, step should be 128.

Note although signed, the step value is
supposed to be always positive.

46

ioctl VIDIOC_QUERYCTRL

__s32 default_value The default value of a
V4L2_CTRL_TYPE_INTEGER, _BOOLEAN or
_MENU control. Not valid for other types of
controls. Drivers reset controls only when the
driver is loaded, not later, in particular not when
the func-open; is called.

__u32 flags Control flags.

__u32 reserved[2] Reserved for future extensions. Drivers must set
the array to zero.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

The struct v4l2_queryctrl id is invalid. The struct v4l2_querymenu id or index is invalid.

47

Notes
1. V4L2_CTRL_FLAG_DISABLED was intended for two purposes: Drivers can skip

predefined controls not supported by the hardware (although returning

EINVAL would do as well), or disable predefined and private controls

after hardware detection without the trouble of reordering control

arrays and indices (EINVAL cannot be used to skip private controls

because it would prematurely end the enumeration).

ioctl VIDIOC_QUERYSTD

Name
VIDIOC_QUERYSTD — Sense the video standard received by the current input

Synopsis

int ioctl(int fd, int request, v4l2_std_id *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_QUERYSTD

argp

Description
The hardware may be able to detect the current video standard automatically. To do so, applications
call VIDIOC_QUERYSTD with a pointer to a v4l2_std_id type. The driver stores here a set of
candidates, this can be a single flag or a set of supported standards if for example the hardware can
only distinguish between 50 and 60 Hz systems. When detection is not possible or fails, the set must
contain all standards supported by the current video input or output.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

48

ioctl VIDIOC_QUERYSTD

EINVAL

This ioctl is not supported.

49

ioctl VIDIOC_REQBUFS

Name
VIDIOC_REQBUFS — Initiate Memory Mapping I/O

Synopsis

int ioctl(int fd, int request, struct v4l2_requestbuffers *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_REQBUFS

argp

Description
This ioctl is used to initiate memory mapped I/O. Memory mapped buffers are located in device
memory and must be allocated with this ioctl before they can be mapped into the application’s
address space.

To allocate device buffers applications initialize three fields of a v4l2_requestbuffers structure. They
set the type field to the respective stream or buffer type, the count field to the desired number of
buffers, and memory must be set to V4L2_MEMORY_MMAP. When the ioctl is called with a pointer to
this structure the driver attempts to allocate the requested number of buffers and stores the actual
number allocated in the count field. It can be smaller than the number requested, even zero, when
the driver runs out of free memory. A larger number is possible when the driver requires more
buffers to function correctly. When memory mapping I/O is not supported the ioctl returns an
EINVAL error code.

Applications can call VIDIOC_REQBUFS again to change the number of buffers, however this cannot
succeed when any buffers are still mapped. A count value of zero frees all buffers, after aborting or
finishing any DMA in progress, an implicit VIDIOC_STREAMOFF.

Table 1. struct v4l2_requestbuffers

__u32 count The number of buffers requested or granted.
This field is only used when memory is set to
V4L2_MEMORY_MMAP.

50

ioctl VIDIOC_REQBUFS

enum v4l2_buf_type type Type of the stream or buffers, this is the same as
the struct v4l2_format type field.

enum v4l2_memory; memory For SPCT6100 applications should set this field
to V4L2_MEMORY_MMAP.

__u32 reserved[2] A place holder for future extensions and custom
(driver defined) buffer types
V4L2_BUF_TYPE_PRIVATE and higher.

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EBUSY

The driver supports multiple opens and I/O is already in progress, or reallocation of buffers was
attempted although one or more are still mapped.

EINVAL

The buffer type (type field) or the requested I/O method (memory) is not supported.

51

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Name
VIDIOC_STREAMON, VIDIOC_STREAMOFF — Start or stop streaming I/O

Synopsis

int ioctl(int fd, int request, const int *argp);

Arguments

fd

File descriptor returned by open.

request

VIDIOC_STREAMON, VIDIOC_STREAMOFF

argp

Description
The VIDIOC_STREAMON and VIDIOC_STREAMOFF ioctl start and stop the capture during streaming
(memory mapping) I/O.

Specifically the capture hardware is disabled and no input buffers are filled (if there are any empty
buffers in the incoming queue) until VIDIOC_STREAMON has been called. Accordingly the output
hardware is disabled, no video signal is produced until VIDIOC_STREAMON has been called. The
ioctl will succeed only when at least one output buffer is in the incoming queue.

The VIDIOC_STREAMOFF ioctl, apart of aborting or finishing any DMA in progress, unlocks any
user pointer buffers locked in physical memory, and it removes all buffers from the incoming and
outgoing queues. That means all images captured but not dequeued yet will be lost, likewise all
images enqueued for output but not transmitted yet. I/O returns to the same state as after calling
VIDIOC_REQBUFS and can be restarted accordingly.

Both ioctls take a pointer to an integer, the desired buffer or stream type. This is the same as struct
v4l2_requestbuffers type.

Note applications can be preempted for unknown periods right before or after the
VIDIOC_STREAMON or VIDIOC_STREAMOFF calls, there is no notion of starting or stopping "now".
Buffer timestamps can be used to synchronize with other events.

52

ioctl VIDIOC_STREAMON, VIDIOC_STREAMOFF

Return Value
On success 0 is returned, on error -1 and the errno variable is set appropriately:

EINVAL

Streaming I/O is not supported, the buffer type is not supported, or no buffers have been
allocated (memory mapping) yet.

53

Appendix A. Demos
All demos are in demo packages including command line demos and GUI demos.

54

Appendix B. Audio Decoding
Introduction to how to use the audio decoding library. To be done.

55

	SPCT6100 Application Development Guide
	Table of Contents
	List of Examples
	Introduction
	Chapter 1. Getting Started
	Chapter 2. Live Path Data Accessing
	2.1. Opening The Device
	2.2. Change Device Properity
	2.3. Streaming IO
	2.4. Memory Mapping
	2.5. Live Data Accessing

	Chapter 3. Variable length Data Accessing
	3.1. Separate H.264, Audio, Motion
	3.2. H.264 Data Accessing
	3.3. Motion Detection Bitmap
	3.4. Audio Data Accessing

	Chapter 4. Card Properity
	4.1. Set The Properity
	4.2. Get The Properity
	4.3. Example

	Chapter 5. Multicard Accessing
	I. Function Reference
	Table of Contents
	ioctl VIDIOCENUMFMT
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCENUMINPUT
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCENUMSTD
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCGCTRL, VIDIOCSCTRL
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCGFMT, VIDIOCSFMT, VIDIOCTRYFMT
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCGINPUT, VIDIOCSINPUT
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCGSTD, VIDIOCSSTD
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCQBUF, VIDIOCDQBUF
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCQUERYBUF
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCQUERYCAP
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCQUERYCTRL
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCQUERYSTD
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCREQBUFS
	Name
	Synopsis
	Arguments
	Description
	Return Value

	ioctl VIDIOCSTREAMON, VIDIOCSTREAMOFF
	Name
	Synopsis
	Arguments
	Description
	Return Value

	Appendix A. Demos
	Appendix B. Audio Decoding

