
Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 1

Commell MPX24794G Programmer’s Guide

History
Revision Date Description Author
1.0 08/19/2011 Firmware version: 0x02, 0x10 PT
1.1 06/21/2012 • Added configuring I/O section

• Added Read/Modify/Write considerations
• Added shadow registers
• Added sample codes
• Added more comments

PT

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 2

Contents
1 Hardware... 4

1.1 Cypress CY8C24794 .. 5
1.2 General Purpose Input Output .. 5

1.2.1 Digital IO .. 6
1.2.2 Mapping .. 7

1.3 Drive Mode ... 7
1.4 PRTxDMx Registers... 9
1.5 Configuring I/O... 10
1.6 Read/Modify/Write Considerations .. 12

1.6.1 The Simple Cases.. 13
1.6.2 Shared Outputs and Complex Mode Inputs .. 13
1.6.3 Shadow Registers Solution ... 14
1.6.4 Using Complex Drive Modes ... 15
1.6.5 Reset State and Configuration .. 15

2 Firmware Guide .. 17
2.1 Descriptors .. 17

2.1.1 Device Descriptors.. 17
2.1.2 String Descriptors ... 19

2.2 USB Vendor Specific Commands .. 20
2.2.1 Vendor Device Commands ... 20

2.2.1.1 Read Firmware Version .. 20
2.3 Programming Firmware .. 21

2.3.1 Command Code vs. Response Code ... 21
2.3.2 Formats ... 22

2.3.2.1 Initial Bulk In Content .. 23
2.3.2.2 CMD_READ_FIRMWARE... 24
2.3.2.3 CMD_READ_GPIO_7_0 ... 24
2.3.2.4 CMD_READ_GPIO_15_8 ... 24
2.3.2.5 CMD_READ_GPIO_23_16 ... 25
2.3.2.6 CMD_READ_GPIO_31_24 ... 25
2.3.2.7 CMD_READ_GPIO_31_0 ... 25
2.3.2.8 CMD_WRITE_GPIO_7_0 ... 26
2.3.2.9 CMD_WRITE_GPIO_15_8 ... 26
2.3.2.10 CMD_WRITE_GPIO_23_16 ... 27
2.3.2.11 CMD_WRITE_GPIO_31_24 ... 27
2.3.2.12 CMD_WRITE_GPIO_31_0 ... 27
2.3.2.13 CMD_READ_PRTxDMx... 28
2.3.2.14 CMD_WRITE_PRTxDMx... 28
2.3.2.15 CMD_READ_PRTxIE ... 29
2.3.2.16 CMD_WRITE_PRTxIE.. 29
2.3.2.17 CMD_READ_PRTxGS .. 30
2.3.2.18 CMD_WRITE_PRTxGS .. 30
2.3.2.19 CMD_READ_PRTxICx ... 30
2.3.2.20 CMD_WRITE_PRTxICx ... 31
2.3.2.21 CMD_SET_DRIVE_MODE .. 31

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 3

2.3.3 Scenario... 32
3 Software Guide ... 33

3.1 Device Drivers Guide ... 33
3.1.1 Device Drivers Organization .. 33
3.1.2 Windows 2000 .. 33
3.1.3 Windows XP (32-bit) Device Driver .. 33
3.1.4 Windows XP (64-bit) Device Driver .. 34
3.1.5 Windows Vista (32-bit) and Windows 7 (32-bit) Device Driver 34
3.1.6 Windows Vista (64-bit) and Windows 7 (64-bit) Device Drivr 34

3.2 How to Install Device Driver.. 35
3.3 Cypress cyUSB ... 35

3.3.1 CyConsole... 35
3.3.2 CyAPI ... 39
3.3.3 CyUSB.NET ... 40

3.4 Programming Guide.. 40
3.4.1 MPX-24794G Command & Response Protocol 40
3.4.2 Shadow Register Programming .. 41
3.4.3 C/C++ Programming... 42
3.4.4 .NET Class Library ... 42

4 Sample Code ... 44
5 References... 52

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 4

1 Hardware

The MPX24794G Module is a USB 2.0 compliant device, which implements 32 bits
General Purpose Input/Output (GPIO) functions. Figure 1 depicts the MPX24794G
USB device module. The MPX24794G USB device adopts Cypress CY8C24794
PSoC as the core component.

The GPIO contains input buffers, output drivers, register bit storage, and
configuration logic for connecting the PSoC device to the outside world.

IO Ports are arranged with (up to) 8 bits per port. Each full port contains eight
identical GPIO blocks, with connections to identify a unique address and register bit
number for each block.

Features

• USB 2.0 Full Speed compliant
• 32-bit GPIO grouped into four 8-bit ports
• Digital IO (digital input and output controlled by software)
• Each IO pin also has up to 7 drive modes
• Each port can be individually programmed to either Input or Output
• Produced in Mini-PCIe card form factor (easily locked on motherboard)

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 5

Figure 1 MPX24794G USB Device Module

1.1 Cypress CY8C24794

The Cypress CY8C24794-24LXTI PSoC is the core component of MPX24794G
USB-GPIO device.

1.2 General Purpose Input Output

The GPIO contains input buffers, output drivers, register bit storage, and
configuration logic for connecting the PsoC device to the outside world.

IO Ports are arranged with (up to) 8 bits per port. Each full port contains eight
identical GPIO blocks, with connections to identify a unique address and register bit
number for each block. MPX-24794G uses Port 0, Port 2, Port 3, and Port 4 to
implement 32-pin programmable general purpose IO.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 6

Each IO pin also has up to seven drive modes that the user can program in order to
meet the real world requirements.

The following drive modes are supported for your programming.

1. Mode 0: Resistive pull down

2. Mode 1: Strong drive

3. Mode 2: High impedance

4. Mode 3: Resistive pull up

5. Mode 4: Open drain, drives high

6. Mode 5: Slow strong drive

7. Mode 6: High impedance analog

8. Mode 7: Open drain, drives low

1.2.1 Digital IO

This section contains the text from the PSoC TRM, Document No. 001-14483 Rev.
*F. Please refer to this manual for detail information.

One of the basic operations of the GPIO ports is to allow the M8C to send
information out of the PSoC device and get information into the M8C from outside
the PSoC device. This is accomplished by way of the port data register (PRTxDR).
Writes from the M8C to the PRTxDR register store the data state, one bit per GPIO.
In the standard non-bypass mode, the pin drivers drive the pin in response to this data
bit, with a drive strength determined by the Drive mode setting. The actual voltage on
the pin depends on the Drive mode and the external load.

The M8C can read the value of a port by reading the PRTxDR register address. When
the M8C reads the PRTxDR register address, the current value of the pin voltage is
translated into a logical value and returned to the M8C. Note that the pin voltage can
represent a different logic value than the last value written to the PRTxDR register.
This is an important distinction to remember in situations such as the use of a read
modify write to a PRTxDR register. Examples of read modify write instructions
include AND, OR, and XOR.

The following is an example of how a read modify write, to a PRTxDR register,
could have an unexpected and even indeterminate result in certain systems. Consider
a scenario where all bits of Port 1 on the PSoC device are in the strong 1 resistive 0
drive mode; so that in some cases, the system the PSoC is in may pull up one of the
bits.

mov reg[PRT1DR], 0X00
or reg[PRT1DR], 0X80

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 7

In the first line of code above, writing a 0x00 to the port will not affect any bits that
happen to be driven by the system the PSoC is in. However, in the second line of
code, it can not guarantee that only bit 7 will be the one set to a strong 1. Because the
OR instruction will first read the port, any bits that are in the pull up state will be read
as a ‘1’. These ones will then be written back to the port. When this happens, the pin
will go into a strong 1 state; therefore, if the pull up condition ends in the system, the
PSoC will keep the pin value at a logic 1.

1.2.2 Mapping

MPX-24794G maps the PRTxDR registers to the outside GPIO as the following table.

Table 1 PRTxDR/GPIO mapping

PRTxDR GPIO Description
PRT0DR[7..0] GPIO[7..0] Each bit of the Port_0 is connecting to each

GPIO pin 7 to pin 0 correspondingly.
PRT2DR[7..0] GPIO[15..8] Each bit of the Port_2 is connecting to each

GPIO pin 15 to pin 8 correspondingly.
PRT3DR[7..0] GPIO[23..16] Each bit of the Port_3 is connecting to each

GPIO pin 23 to pin 16 correspondingly.
PRT4DR[7..0] GPIO[31..24] Each bit of the Port_4 is connecting to each

GPIO pin 31 to pin 24 correspondingly.

Please be noted that writes from the M8C to the PRTxDR register store the data state,
one bit per GPIO. In the standard non-bypass mode, the pin drivers drive the pin in
response to this data bit with a drive strength determined by the Drive mode setting
(see Drive Mode section). The actual voltage on the pin depends on the Drive mode
and the external load.

1.3 Drive Mode

Please refer to “6.2.4 PRTxDMx Registers” (page 105) of the CY8C24x94 PSoC
Technical Reference Manual” for detail information about the drive mode of GPIO
ports.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 8

Figure 2 Drive Modes

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 9

1.4 PRTxDMx Registers

The Port Drive Mode Bit Registers (PRTxDMx) are used to specify the Drive mode
for GPIO pins.

Bits 7 to 0: Drive Mode x[7:0]. In the PRTxDMx registers there are eight possible
drive modes for each port pin. Three mode bits are required to select one of these
modes, and these three bits are spread into three different registers (PRTxDM0,
PRTxDM1, and PRTxDM2). The bit position of the effected port pin (for example,
Pin[2] in Port 0) is the same as the bit position of each of the three drive mode
register bits that control the Drive mode for that pin (for example, bit[2] in
PRT0DM0, bit[2] in PRT0DM1, and bit[2] in PRT0DM2). The three bits from the
three registers are treated as a group. These are referred to as DM2, DM1, and DM0,
or together as DM[2:0]. Drive modes are showed in the following table.

Table 2 Pin Drive Modes

For analog IO, the Drive mode should be set to one of the High Z modes, either 010b
or 110b. The 110b mode has the advantage that the block’s digital input buffer is
disabled, so no crowbar current flows even when the analog input is not close to
either power rail. When digital inputs are needed on the same pin as analog inputs,
the 010b Drive mode should be used. If the 110b Drive mode is used, the pin will
always be read as a zero by the CPU and the pin will not be able to generate a useful
interrupt. (It is not strictly required that a High Z mode be selected for analog
operation.)

For global input modes, the Drive mode must be set to 010b.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 10

The GPIO provides a default Drive mode of high impedance, analog (High Z). This is
achieved by forcing the reset state of all PRTxDM1 and PRTxDM2 registers to FFh.

The resistive drive modes place a resistance in series with the output, for low outputs
(mode 000b) or high outputs (mode 011b). Strong Drive mode 001b gives the fastest
edges at high DC drive strength. Mode 101b give the same drive strength but with
slow edges. The open-drain modes (100b and 111b) also use the slower edge rate
drive. These modes enable open-drain functions such as I2C mode 11b (although the
slow edge rate is not slow enough to meet the I2C fast mode specification).

1.5 Configuring I/O

The PSoC Designer has a panel that allows you to select the ‘Drive” mode on each
pin. Typical selection are High Z, High Z Analog, Open Drain High, Open Drain
Low, Pull Down, Pull Up, Strong, and Strong Slow.

Figure 3 Drive Modes (from TRM)

The PSoC Technical Reference Manual (Section 6.1, PSoC TRM, Document No.
001-14463 Rev. *F) provides the Drive Modes chart shown above and also a Diagram
representation of the mode shown below. The ‘Drive Modes’ selection chart details
the various modes. The first three columns indicate the settings for the three ports
configuration registers PRTxDMx. The two columns on the right indicate the required
data output state of register PRTxDR.

Figure 4 Diagram of port pin configuration.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 11

The eight diagrams help describe the pin configuration. The top of each diagram
represents the Supply voltage while the bottom is Ground. The box with the X in on
the right represents the pin, while the line or resistor on the left represents the
PRTxDR output register bit. When the PRTxDR output is set to a logical 0, this
activates the low side switch. When set to a logical 1, the high side switch is active.
For the simple case of a ‘Strong’ output, Diagram 1, setting the PRTxDR bit to a 1
activates the high side switch driving the pin to Vdd. When a 0 is written to the
PRTxDR bit the low side switch activates, driving the pin to ground. If a resistor is
shown attached to the input of the switch then a ‘Slow’ slew rate mode is used.

Refer to the two columns in the Drive Modes table above (‘Data=0’, ‘Data=1’) to
determine the active state and to help clarify the Diagrams.

Figure 5 - Summary of Drive Modes and PRTxDR output register settings

Mode Description
0. Pull Down Write 1 to PRTxDR activates the high side switch driving

the pin to Vdd. Write 0 to PRTxDR activates the low side
switch driving the pin to Ground through the 5.6k ohm
internal resistor.

1. Strong Write 1 to PRTxDR activates the high side switch driving
the pin to Vdd. Write 0 to PRTxDR activates the low side
switch driving the pin to Ground.

2. High Z Both high and low side switch deactivated. The pin floats in
a high impedance state. Writing a 1 or 0 to PRTxDR has no
effect.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 12

3. Pull Up Writing 1 to PRTxDR activates the high side switch driving
the pin to Vdd through the 5.6k ohm internal resistor.
Writing 0 to PRTxDR activates the low side switch driving
the pin to Ground.

4. Open Drain High Writing 1 to PRTxDR activates the high side switch driving
the pin to Vdd. Writing 0 to PRTxDR deactivates the high
side switch, the low side switch is always deactivated, the
output pin floats in a high impedance.

5. Strong Slow Same as case 1 but without the slew control speed up
circuitry. It will not snap on or off as fast. There is a one
clock period delay compared to the case 1. Strong Mode.

6. High Z Analog Same as case 2. The pin is disconnected from the digital
input circuitry and is available for analog use only.

7. Open Drain Low Writing 1 to PRTxDR deactivates the low side switch, the
high side switch is always deactivated, the output pin floats
in a high impedance state. Writing a 0 to PRTxDR activates
the low side switch driving the pin to Ground.

Please be noted that the startup code does not initialize the PRTDRx output register.
For the most common drive modes of ‘Hi Z’, ‘Hi Z Analog’, ‘Strong’ and ‘Strong
Slow’ the initialization of the PRTDRx output port does not alter the pin
configuration. Notice in the ‘Drive Modes’ chart, the configuration is the same
independent of the PRTDRx output register (Data=0, Data=1 columns) for these
common drive modes. If a Pull Up/Down or Open Drain High/Low is used then the
initialization of the PRTDRx output register is needed to select the desired mode, we
will call these modes ‘Complex Drive Modes’.

Figure 6 Common and Complex Drive Modes

1.6 Read/Modify/Write Considerations

The Technical Reference Manual Section 6.1 warns against using read/modify/write
instructions on the PRTxDR registers or any write only register.

The read/modify/write instructions include: AND, OR, XOR. In C code it would look
like this:

PRT1DR |= 1; /* turn pin 0 on */
PRT1DR &= 1; /* turn pin off */

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 13

PRT1DR ^= 1; /* toggle pin 0 */

This will translate to a single read/modify/write instruction in assembly:

OR reg[PRT1DR], 1
AND reg[PRT1DR], 1
XOR reg[PRT1DR], 1

When we perform these actions on the PRTxDR output register, we essentially
perform a read of all pin states, make the change and then write out the value to all
pins on the port. While we can do this and it works in most of the common drive
mode cases, it can be problematic as the pin state we read back does not necessarily
reflect the last value written. This is especially true when using the complex drive
modes.

1.6.1 The Simple Cases

In many cases our digital IO will be a simple case that does not require a lot of
consideration. So for example if we have only Strong outputs and Hi-Z inputs on a set
of port pins, then the read/modify/write operations will generally do what you want
them to do unless they are shorted or overloaded. Any simple Hi-Z input pins will
retain the Hi-Z mode without regard to what is written to the PRTxDR output register.
One could also maintain and use a private shadow register of the output port state and
use a simple write operation to transfer it. The point is that it is completely valid in
most cases to write code that turns on a IO output bit using a read/modify/write
operation like “PRTxDR |=1;”. At the same time, it is important to understand the
sharing issues involved so you recognize when a problem case exists. So for example
if you mixed the above direct read/modify/write use above the LED user module on
the same port, then you have a serious potential problem: the LED user module is
using a shadow register and your other code is not, resulting in the outputs being set
to something you do not expect. Solutions would be to use the LED user module for
all outputs, learn how to use the common shadow register that the LED user module
creates, or take out the LED user module and perform all IO with the
read/modify/write or private shadow register.

The trick is to understand when you have a situation that is a tougher case and
requires serious effort to coordinate a sharing solution on a particular port. You may
discover this the hard way in development where your outputs or inputs do not
function as expected. Worst case is you get a design finished and into production and
then get occasional malfunctions due to overlooking these sharing issues.

1.6.2 Shared Outputs and Complex Mode Inputs

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 14

If you have any shared independent outputs on any single port, then a sharing solution
must be implemented to coordinate writes to the port. If you have any inputs that use
the Complex Drive Modes, then this must be coordinate as well since the mode
depends on the value of the output port. If you have any outputs including hardware
modules that use the Complex Drive Mode then a sharing solution must be
implemented to retain the correct mode.

1.6.3 Shadow Registers Solution

While performing read/modify/write operations on an output register is convenient
and an acceptable sharing solution is most cases, in a general sense it is problematic
and could result in unexpected behavior. This is especially true if we wish to define
software libraries that operate on a subset of arbitrary pins independent of the pins
configurations.

A solution implemented by the PSoC Designer for the software user modules that
operate on output pins is to define a RAM variable that retains the output state called
a shadow register. All modifications to the output port are performed on this variable
and then a simple write operation is use to transfer this to the output port register. If
your application code needs to share the output register of a port and you also use one
of these PSoC Designer User Modules (LED, LCD, I2Cm, LED7SEG), then it is
required to use the shadow register associated with the port that the PSoC Designer
generates. To change the state of an output pin, we make changes to this variable and
then perform a write to the port.

For example, if we use an I2Cm and configure it to use P1_2, P1_3, we will find if
we look at the code for this module(psocgpioint.h) it exports a variable called
Port_1_Data_SHADE:

extern BYTE Port_1_Data_SHADE;

Since any output on Port1 needs to have a single coordinated solution (there can be
only one shadow register), we need to use this shadow register:

if (PRT1DR & 2) {
 // Switch is turned on
 Port_1_Data_SHADE |= 1; // turn Light bit on
 PRT1DR = Port_1_Data_SHADE; // write port output
} else {
 // Switch is turned off
 Port_1_Data_SHADE &= ~1; // turn Light bit off
 PRT1DR = Port_1_Data_SHADE; // write port output
}

The PSoC Designer LED user module provides a convenient way to work with pin
outputs and it takes care of the shadow register handling:

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 15

if (PRT1DR & 2) {
 // Switch is turned on
 LED_1_On(); // turn the Light On
} else {
 // Switch is turned off
 LED_1_Off(); // turn the Light off
}

We could rename this user module label in the Designed to ‘Light’ so that our code
would read more naturally:

if (PRT1DR & 2) {
 // Switch is turned on
 Light_On(); // turn the Light on
} else {
 // Switch is turned off
 Light_Off(); // turn the Light off
}

A useful resource that explains Shadow Register use and more is contained in the
PSoC Designer,
Menu->Help->Documentation->IDE Users Guide.pdf, starting at section 7.1.4.

1.6.4 Using Complex Drive Modes

If we have inputs or outputs that use the complex drive modes (Pull Up/Down, Open
Drain) then we may need to initialize the output register to obtain the desired state.
The PSoC Designer does not generate initialization code to perform this.

The default state of the output register on reset is 0. For this case, no initialization of
PRTxDR is required for an input using Pull Down. Another case where no
initialization of PRTxDR is needed is for an output that is configured as Open Drain
High and the desired default state is off (High Impedance).

1.6.5 Reset State and Configuration

The reset state of port registers for the most common PSoC parts covered by the TRM
are as follows:

PRTxDM0=00H, PRTxDM1=FFH, PRTxDM2=FFH, PRTxDR=00H.

This corresponds to the High Z Analog drive mode as the default state on reset.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 16

Any attached hardware should be arranged to transition through the reset stage given
a High Z pin state for the short duration of startup and reset. This may require
external resistors (pull-ups/pull-downs) if the hardware is sensitive during this short
transition period.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 17

2 Firmware Guide

This section describes the firmware that runs on the CY8C24794 controller. This
MPX-24794G firmware implements the command / response protocol supporting
the communication between the USB host and MPX-24794G card.

2.1 Descriptors

This paragraph defines the following information of the MPX-24794G USB device.

• Device Attributes
• Configuration Descriptor
• Configuration Attributes
• Interface Descriptors
• Interface Attributes
• Endpoint Descriptors

2.1.1 Device Descriptors

Vendor ID = 0xCECE
Product ID = 0x7940

VID_CECE&PID_7940

Figure 7 MPX-24794G Device Descriptors

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 18

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 19

2.1.2 String Descriptors

Figure 8 MPX-24794G String Descriptors

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 20

2.2 USB Vendor Specific Commands

The MPX24794G GPIO-USB card supports vendor specific commands. Users use
these commands to get some information.

2.2.1 Vendor Device Commands

2.2.1.1 Read Firmware Version

Vendor IN command: Read Firmware Version
bmRequestType = 0x00
bRequest = 0x00
wValue = don’t care

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 21

wIndex = don’t care
wLength = 0x0002

2.3 Programming Firmware

This section describes the MPX-24794G firmware implementation and how to
programming the firmware via USB transactions.

2.3.1 Command Code vs. Response Code

MPX-24794G firmware designs command code and response code in pair except
the first bulk in transaction, which is trying to read back to firmware ready
information.

The USB Bulk Out is implemented in Endpoint 2. This EP2 is used to take the
commands issued from the application resides in the USB host side. Each command
is denoted by a unique byte.

The firmware takes action according to the command packet from the USB host
side. The firmware then prepares the return result packet after the completion of the
requested command.

The USB Bulk In is implemented in Endpoint 1. This EP1 is used to return
requested result back to the USB host. The application should therefore issue a bulk
in transaction in order to retrieve back the execution result of the prior bulk out
transaction.

The result packet is composed according to its corresponding command packet.
Each command code has its own unique response code. The application should
check the response code according to the command code.

The following table shows the command codes and its response codes defined in the
MPX-24794G firmware.

Table 3 Command Code vs. Response Code

Name Code Description
CMD_READ_VERSION 0x00
RSP_READ_VERSION 0x01
CMD_READ_GPIO_7_0 0x02
RSP_READ_GPIO_7_0 0x03
CMD_READ_GPIO_15_8 0x04

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 22

RSP_READ_GPIO_15_8 0x05
CMD_READ_GPIO_23_16 0x06
RSP_READ_GPIO_23_16 0x07
CMD_READ_GPIO_31_24 0x08
RSP_READ_GPIO_31_24 0x09
CMD_READ_GPIO_31_0 0x0A
RSP_READ_GPIO_31_0 0x0B
CMD_WRITE_GPIO_7_0 0x10
RSP_WRITE_GPIO_7_0 0x11
CMD_WRITE_GPIO_15_8 0x12
RSP_WRITE_GPIO_15_8 0x13
CMD_WRITE_GPIO_23_16 0x14
RSP_WRITE_GPIO_23_16 0x15
CMD_WRITE_GPIO_31_24 0x16
RSP_WRITE_GPIO_31_24 0x17
CMD_WRITE_GPIO_31_0 0x18
RSP_WRITE_GPIO_31_0 0x19
CMD_READ_PRTxDMx 0x20
RSP_READ_PRTxDMx 0x21
CMD_WRITE_PRTxDMx 0x22
RSP_WRITE_PRTxDMx 0x23
CMD_READ_PRTxIE 0x30
RSP_READ_PRTxIE 0x31
CMD_WRITE_PRTxIE 0x32
RSP_WRITE_PRTxIE 0x33
CMD_READ_PRTxGS 0x34
RSP_READ_PRTxGS 0x35
CMD_WRITE_PRTxGS 0x36
RSP_WRITE_PRTxGS 0x37
CMD_READ_PRTxICx 0x38
RSP_READ_PRTxICx 0x39
CMD_WRITE_PRTxICx 0x3A
RSP_WRITE_PRTxICx 0x3B
CMD_SET_DRIVE_MODE 0x40
RSP_SET_DRIVE_MODE 0x41
RSP_READY 0xFD
CMD_INVALID_COMMAND 0xFE
RSP_INVALID_COMMAND 0xFF

2.3.2 Formats

Table 4 Bulk Out (EP2) Command Format

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 23

Offset Name Description
+ 0 Command code Mandatory
+ 1 Parameter 0 Optional
+ 2 Parameter 1 Optional
+ 3 Parameter 2 Optional
… … …
+ n Parameter n Optional

Notes:

1. Up to 16 bytes in a bulk out transaction

Table 5 Bulk In (EP1) Response Format

Offset Name Description
+ 0 Response code See Response Code Table
+ 1 Length Whole packet length
+ 2 Error code See Error Code Table
+ 3 Return 0 Optional
+ 4 Return 1 Optional
+ 5 Return 2 Optional
… … Optional
+ n Checksum Checksum of the whole packet

Notes:

1. Checksum is the arithmetic-negation of the sum of the whole packet.
2. The whole packet is from the response code to the checksum byte.
3. Length is the number of bytes of the whole packet.
4. The sum of the whole packet should be equal to zero in low byte.
5. Example (in hex): FD 07 0 55 AA 02 FB.
6. Read in 16 bytes for each bulk in transaction.

2.3.2.1 Initial Bulk In Content

The Bulk In buffer contains the following data after the USB bus reset.

Offset Name Description
+ 0 0xFD
+ 1 0x07
+ 2 Error Code
+ 3 0x55
+ 4 0xAA

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 24

+ 5 Version Firmware version
+ 6 Checksum

2.3.2.2 CMD_READ_FIRMWARE

Bulk Out (EP2)
Offset Name Description
+ 0 0x00 Read firmware version command

Bulk In (EP1)
Offset Name Description
+ 0 0x01 Read firmware version response
+ 1 0x05 Length
+ 2 Error Code
+ 3 Version Firmware version
+ 4 Checksum

2.3.2.3 CMD_READ_GPIO_7_0

Bulk Out (EP2)
Offset Name Description
+ 0 0x02 Read GPIO pin [7..0] command

Bulk In (EP1)
Offset Name Description
+ 0 0x03 Response code
+ 1 Length
+ 2 Error Code
+ 3 PRT0DR
+ 4 Checksum

2.3.2.4 CMD_READ_GPIO_15_8

Bulk Out (EP2)
Offset Name Description
+ 0 0x04 Read GPIO pin [15..8] command

Bulk In (EP1)
Offset Name Description

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 25

+ 0 0x05 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT2DR
+ 4 Checksum

2.3.2.5 CMD_READ_GPIO_23_16

Bulk Out (EP2)
Offset Name Description
+ 0 0x06 Read GPIO pin [23..16] command

Bulk In (EP1)
Offset Name Description
+ 0 0x07 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT3DR
+ 4 Checksum

2.3.2.6 CMD_READ_GPIO_31_24

Bulk Out (EP2)
Offset Name Description
+ 0 0x08 Read GPIO pin [31..24] command

Bulk In (EP1)
Offset Name Description
+ 0 0x09 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT4DR
+ 4 Checksum

2.3.2.7 CMD_READ_GPIO_31_0

Bulk Out (EP2)
Offset Name Description
+ 0 0x0A Read GPIO pin [31..0] command

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 26

Bulk In (EP1)
Offset Name Description
+ 0 0x0B Response
+ 1 Length
+ 2 Error Code
+ 3 PRT4DR
+ 4 PRT3DR
+ 5 PRT2DR
+ 6 PRT0DR
+ 7 Checksum

2.3.2.8 CMD_WRITE_GPIO_7_0

Bulk Out (EP2)
Offset Name Description
+ 0 0x10 Write GPIO pin [7..0] command
+ 1 PRT0DR Value to write to

Bulk In (EP1)
Offset Name Description
+ 0 0x11 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT0DR* Immediately read back after write
+ 4 Checksum

2.3.2.9 CMD_WRITE_GPIO_15_8

Bulk Out (EP2)
Offset Name Description
+ 0 0x12 Write GPIO pin [15..8] command
+ 1 PRT2DR Value to write to

Bulk In (EP1)
Offset Name Description
+ 0 0x13 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT2DR* Immediately read back after write
+ 4 Checksum

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 27

2.3.2.10 CMD_WRITE_GPIO_23_16

Bulk Out (EP2)
Offset Name Description
+ 0 0x14 Write GPIO pin [23..16] command
+ 1 PRT3DR Value to write to

Bulk In (EP1)
Offset Name Description
+ 0 0x15 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT3DR* Immediately read back after write
+ 4 Checksum

2.3.2.11 CMD_WRITE_GPIO_31_24

Bulk Out (EP2)
Offset Name Description
+ 0 0x16 Write GPIO pin [31..24] command
+ 1 PRT4DR Value to write to

Bulk In (EP1)
Offset Name Description
+ 0 0x17 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT4DR* Immediately read back after write
+ 4 Checksum

2.3.2.12 CMD_WRITE_GPIO_31_0

Bulk Out (EP2)
Offset Name Description
+ 0 0x18 Write GPIO pin [31..0] command
+ 1 PRT4DR Value to GPIO pin [31..24]
+ 2 PRT3DR Value to GPIO pin [23..16]
+ 3 PRT2DR Value to GPIO pin [15..8]

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 28

+4 PRT0DR Value to GPIO pin [7..0]

Bulk In (EP1)
Offset Name Description
+ 0 0x19 Response
+ 1 Length
+ 2 Error Code
+ 3 PRT4DR* Immediately read back after write
+ 4 PRT3DR* Immediately read back after write
+ 5 PRT2DR* Immediately read back after write
+ 6 PRT0DR* Immediately read back after write
+ 7 Checksum

2.3.2.13 CMD_READ_PRTxDMx

Bulk Out (EP2)
Offset Name Description
+ 0 0x20 Read PRTxDMx command
+ 1 PRTx Port number (x = 0, 2, 3, 4)

Bulk In (EP1)
Offset Name Description
+ 0 0x21 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxDM2 x = 0, 2, 3, 4
+ 4 PRTxDM1
+ 5 PRTxDM0
+ 6 Checksum

2.3.2.14 CMD_WRITE_PRTxDMx

Bulk Out (EP2)
Offset Name Description
+ 0 0x22 Write PRTxDMx command
+ 1 PRTx x = 0, 2, 3, 4
+ 2 PRTxDM2 Value to write to
+ 3 PRTxDM1 Value to write to
+ 4 PRTxDM0 Value to write to

Bulk In (EP1)

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 29

Offset Name Description
+ 0 0x23 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxDM2* Immediately read back after write
+ 4 PRTxDM1* Immediately read back after write
+ 5 PRTxDM0* Immediately read back after write
+ 6 Checksum

2.3.2.15 CMD_READ_PRTxIE

Bulk Out (EP2)
Offset Name Description
+ 0 0x30 Read PRTxIE command
+ 1 PRTx Port number (x = 0, 2, 3, 4)

Bulk In (EP1)
Offset Name Description
+ 0 0x31 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxIE
+ 4 Checksum

2.3.2.16 CMD_WRITE_PRTxIE

Bulk Out (EP2)
Offset Name Description
+ 0 0x32 Write PRTxIE command
+ 1 PRTx Port number (x = 0, 2, 3, 4)
+ 2 PRTxIE Value to write to

Bulk In (EP1)
Offset Name Description
+ 0 0x33 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxIE* Immediately read back after write
+ 4 Checksum

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 30

2.3.2.17 CMD_READ_PRTxGS

Bulk Out (EP2)
Offset Name Description
+ 0 0x34 Read PRTxGS command
+ 1 PRTx Port number (x = 0, 2, 3, 4)

Bulk In (EP1)
Offset Name Description
+ 0 0x35 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxGS
+ 4 Checksum

2.3.2.18 CMD_WRITE_PRTxGS

Bulk Out (EP2)
Offset Name Description
+ 0 0x36 Write PRTxGS command
+ 1 PRTx Port number (x = 0, 2, 3, 4)

Bulk In (EP1)
Offset Name Description
+ 0 0x37 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxGS* Immediately read back after write
+ 4 Checksum

2.3.2.19 CMD_READ_PRTxICx

Bulk Out (EP2)
Offset Name Description
+ 0 0x38 Read PRTxICx command
+ 1 PRTx Port number (x = 0, 2, 3, 4)

Bulk In (EP1)
Offset Name Description
+ 0 0x39 Response
+ 1 Length

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 31

+ 2 Error Code
+ 3 PRTxIC1
+ 4 PRTxIC0
+ 5 Checksum

2.3.2.20 CMD_WRITE_PRTxICx

Bulk Out (EP2)
Offset Name Description
+ 0 0x3A Write PRTxICx command
+ 1 PRTx Port number (x = 0, 2, 3, 4)
+ 2 PRTxIC1 Value to write to
+ 3 PRTxIC0 Value to write to

Bulk In (EP1)
Offset Name Description
+ 0 0x3B Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxIC1 Immediately read back after write
+ 4 PRTxIC0 Immediately read back after write
+ 5 Checksum

2.3.2.21 CMD_SET_DRIVE_MODE

Bulk Out (EP2)
Offset Name Description
+ 0 0x40 Set port drive mode command
+ 1 PRTx Port number (x = 0, 2, 3, 4)
+ 2 DriveMode Drive mode number (0, 1, 2, 3, 4, 5, 6, 7)

Bulk In (EP1)
Offset Name Description
+ 0 0x41 Response
+ 1 Length
+ 2 Error Code
+ 3 PRTxDM2 Immediately read back after write
+ 4 PRTxDM1 Immediately read back after write
+ 5 PRTxDM0 Immediately read back after write
+ 6 Checksum

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 32

Notes:
• Please refer to the CY8C24x94 PSoC TRM for detail information regarding

to the drive mode number.
• This command is provided for programming convenience. You can also

achieve the same purpose via CMD_WRITE_PRTxDMx command.
• This command limits the whole port (eight pins) to be behavior as either

input or output and can’t be mixed.
• All four ports (PRT0, PRT2, PRT3, and PRT4) are programming to have

drive mode of value 0x07 by default. This means that GPIO[31..0] pins are
default to digital output.

• Set to drive mode 0x02 for the port that you want to behavior to as digital
input. 5V is considered to be the logical value of 1; others are regarded to be
the logical value of 0.

2.3.3 Scenario

The following scenario shows a way to programming the MPX-24794G device
module via vendor specific USB bulk in and bulk out commands.

1. Insert MPX-24794G USB device
2. Install the device driver as instructed by the Windows Device Driver

Wizard. Please see the manual for details.
3. The host application opens a connecting MPX-24794G device via the API.
4. The application issues the first command/response paired transfer. Issue the

“CMD_READ_FIRMWARE” command and check the
“RSP_READ_FIRMWARE” response is recommended.

5. The application then issues paired Bulk Out and Bulk In transactions. The
Bulk Out transaction sends the command to the MPX-24794G firmware and
the following Bulk In transaction brings back its corresponding response
(the result of the just requested command) packet.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 33

3 Software Guide

This chapter describes how to install the corresponding drivers for your target
operating system and how to programming the installed device driver and
intermediate layer libraries.

3.1 Device Drivers Guide

3.1.1 Device Drivers Organization

Figure 9 Device Drivers Organization

3.1.2 Windows 2000

Figure 10 Device Driver for Windows 2000

3.1.3 Windows XP (32-bit) Device Driver

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 34

Figure 11 Windows XP 32-bit Device Driver

3.1.4 Windows XP (64-bit) Device Driver

Figure 12 Windows XP 64-bit Device Driver

3.1.5 Windows Vista (32-bit) and Windows 7 (32-bit) Device Driver

Figure 13 Windows Vista and Windows 7 Device Driver (32-bit)

3.1.6 Windows Vista (64-bit) and Windows 7 (64-bit) Device Drivr

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 35

Figure 14 Windows Vista and Windows 7 Device Driver (64-bit)

3.2 How to Install Device Driver

Please refer to the “MPX-24794G User’s Manual”.

3.3 Cypress cyUSB

Users are encouraged to use Cypress cyUSB tools to test and program MPX-24794G
USB device.

Please refer to CyConsole for testing the MPX-24794G USB device.

Please refer to CyAPI information for C/C++ programming.

Please refer to CyUSB.NET information for .NET programming.

Figure 15 Cypress cyUSB Tools

3.3.1 CyConsole

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 36

CyConsole can use used to test the Commell IO commands defined for MPX-24794G
device.

Figure 12 shows how to select the installed mpx24794.sys device driver when you
launch the CyConsole application.

Figure 13 shows the result of issue the first Bulk In transaction. The first Bulk In
transaction always reads in the MPX-24794G firmware ready and version
information. Application is encouraged to issue a Bulk In transaction prior to any
Commell vendor specific IO commands. Please refer to the “Initial Bulk In Content”
section for the description of the return package.

Figure 14 shows an example of (command, response) pair scenario. The application
first issues a command via Bulk Out transaction according to the command listing.
The application then issues a Bulk In transaction in order to retrieve back the result of
the executed command. Please refer to the user’s guide for detail package
descriptions.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 37

Figure 16 Select mpx24794.sys

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 38

Figure 17 First Bulk In Transaction

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 39

Figure 18 CMD_READ_GPIO_31_0

3.3.2 CyAPI

Please refer to the documentations in the CyAPI folder.

The mpx24794.h file defines the Commell GUID of the Commell MPX-24794G
GPIO USB card. Includes this header file into your program file.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 40

3.3.3 CyUSB.NET

Please refer to the documentations in the CyUSB.NET folder.

3.4 Programming Guide

This section describes how your Windows programs interact with the MPX-24794G
firmware via USB transfers. MPX-24794G implements Command / Response
Protocol for communication between USB host and MPX-24794G firmware.
Command packets are sent to the MPX-24794G firmware via USB Bulk Out
transfers, while Response packets are received immediately via USB Bulk In
transfers.

3.4.1 MPX-24794G Command & Response Protocol

Applications communicate with MPX-24794G firmware via Command and
Response protocol. Command packet is sent via Bulk Out transfers and Response
packet is received via Bulk In transfers. The following diagram shows how the
command and response protocol is operating.

Figure 19 Command and Response Protocol

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 41

Notes:

• Bulk out transfer is used to send command packet out from the host side to
the MPX24794G firmware side.

• Bulk in transfer is used to receive response packet from the MPX24794G
firmware side.

• A command packet is 16 bytes.
• A response packet is 16 bytes.
• The Command Response Protocol is paired protocol. That is a command

packet should immediately come with a response packet.

3.4.2 Shadow Register Programming

You programs need to implement shadow register solution if your application meets
the criteria of the read/modify/write effects.

Here is an example of how you implement shadow register solution in your C/C++
programs.

USB Host MPX24794G
Firmware

Command Packet (Bulk Out)

Response Packet (Bulk In)

Command Packet (Bulk Out)

Response Packet (Bulk In)

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 42

/* Declare each shadow registers as global variables */
extern unsigned char Port_0_Data_SHADE;
extern unsigned char Port_2_Data_SHADE;
extern unsigned char Port_3_Data_SHADE;
extern unsigned char Port_4_Data_SHADE;

Keep these global variables for the output register values for the Port 0, Port 2, Port 3,
and Port 4. Initialize these variables as your program wants to initialize PRT0DR,
PRT2DR, PRT3DR, and PRT4DR registers. Keep these variables up to synchronous
while your program is using the command/response protocol.

3.4.3 C/C++ Programming

The CyAPI.lib needs to be linked with your application. Both the “cyapi.h” file and
“mpx24794.h” header files need to be included into your project.

Your new CCyUSBDevice() needs to have “MPX24794G_DRV_GUID” constant
specified as the second parameter in order to access Commell MPX-24794G GPIO
USB card.

Example:
#include "cyapi.h"
#include "mpx24794.h"

void main()
{
 CCyUSBDevice *USBDevice;
 USB_DEVICE_DESCRIPTOR descr;

 /* Create an instance of CCyUSBDevice */
 USBDevice = new CCyUSBDevice(NULL, MPX24794G_DRV_GUID, true);
}

3.4.4 .NET Class Library

CyUSB.dll is a managed Microsoft .NET class library. It provides a high-level,
powerful programming interface to USB devices.

Because CyUSB.dll is a managed .NET library, its classes and methods can be
accessed from any of the Microsoft Visual Studio .NET managed languages such as
Visual Basic .NET, C#, Visual J#, and managed C++.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 43

To use the library, you need to add a reference to CyUSB.dll to your project’s
Reference folder. Then any source file that access the CyUSB namespace will need to
include a line to include the namespace in the appropriate syntax.

The library employs a model of DeviceList, Devices and EndPoints. An application
will normally create an instance of the USBDeviceList class, which represents a list
of USB devices. Each of those devices can then be accessed individually.

Please refer to the “Cypress CyUSB .NET DLL Programmer’s Reference” of the
Cypress USB Suite v3.4.2 for detail information.

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 44

4 Sample Code

This sample code is implemented by using Microsoft Visual Studio 2010. You can
also download this sample code from our Web site.

/**
 mpx24794g‐demo.cpp
 A demo program shows how to communicate with MPX24794G card.
 06/21/2012
 */

#include "stdafx.h"
#include <Windows.h>
#include <stdio.h>
#include <conio.h>
#include "CyAPI.h"
#include "mpx24794guids.h"
#include "mpx24794cmds.h"

#define SIZE_BULK_PACKET 16

#define OFFSET_RESPONSE_CODE 0
#define OFFSET_LENGTH 1
#define OFFSET_ERROR_CODE 2
#define OFFSET_RETURN_0 3
#define OFFSET_RETURN_1 (OFFSET_RETURN_0 + 1)
#define OFFSET_RETURN_2 (OFFSET_RETURN_0 + 2)
#define OFFSET_RETURN_3 (OFFSET_RETURN_0 + 3)
#define OFFSET_RETURN_4 (OFFSET_RETURN_0 + 4)
#define OFFSET_RETURN_5 (OFFSET_RETURN_0 + 5)

#define ERR_ZERO 0
#define ERR_SUCCESS ERR_ZERO
#define ERR_XFER_TIMEOUT 0X80
#define ERR_WRONG_RESPONSE_CODE 0X81
#define ERR_CHECKSUM_ERROR 0X82
#define ERR_INVALID_PACKET 0X83

int BulkOutAndIn(unsigned char bResponseCode, CCyBulkEndPoint *pBulkOut,
unsigned char *pCommand, CCyBulkEndPoint *pBulkIn, unsigned char *pResponse);
int CheckResponse(unsigned char bResponseCode, unsigned char *pResponse);

void GetVersion(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn);
void CheckPorts(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn);
void CheckPins_7_0(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn);
void CheckPins_15_8(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn);
void CheckPins_23_16(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn);
void CheckPins_31_24(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn);

CCyUSBDevice *pDevice = NULL;
CCyBulkEndPoint *pBulkIn1 = NULL;

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 45

CCyBulkEndPoint *pBulkOut2 = NULL;

int _tmain(int argc, _TCHAR* argv[])
{
 int ch;

 pDevice = new CCyUSBDevice(NULL, MPX24794G_DRV_GUID, true);
 if(0 == pDevice)
 {
 printf("No MPX24794G found\n");
 return 0;
 }

 printf("%s\n", pDevice‐>FriendlyName);
 printf("VID=%X; PID=%X\n", pDevice‐>VendorID, pDevice‐>ProductID);

 pBulkOut2 = (CCyBulkEndPoint *)pDevice‐>EndPoints[2];
 pBulkIn1 = (CCyBulkEndPoint *)pDevice‐>EndPoints[1];

 if((NULL == pBulkOut2) || (NULL == pBulkIn1))
 {
 printf("Wrong endpoints\n");
 goto done;
 }

 printf("Get Firmware Version:\n");
 GetVersion(pBulkOut2, pBulkIn1);

 printf("\n");
 printf("Check ports\n");
 CheckPorts(pBulkOut2, pBulkIn1);

 CheckPins_7_0(pBulkOut2, pBulkIn1);
 CheckPins_15_8(pBulkOut2, pBulkIn1);
 CheckPins_23_16(pBulkOut2, pBulkIn1);
 CheckPins_31_24(pBulkOut2, pBulkIn1);

done:
 printf("\n\n");
#ifdef _DEBUG
 printf("Press any key to exit...\n");
 ch = _getch();
#endif /* DEBUG */

 if(pDevice)
 pDevice‐>Close();

 return 0;
} /* tmain */

void GetVersion(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn)
{
 int err;
 unsigned char *pCommand;
 unsigned char *pResponse;

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 46

 pCommand = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];
 pResponse = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];

 if((NULL == pCommand) || (NULL == pResponse))
 {
 printf("Failed to allocate buffer\n");
 goto done;
 }

 *(pCommand + 0) = CMD_READ_VERSION;

 err = BulkOutAndIn(RSP_READ_VERSION, pBulkOut, pCommand, pBulkIn,
pResponse);
 if(ERR_ZERO == err)
 {
 printf("Firmware version: 0X%2.2X\n", *(pResponse +
OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");
 }

done:
 if(pCommand)
 delete [] pCommand;

 if(pResponse)
 delete [] pResponse;
} /* GetVersion */

void CheckPorts(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn)
{
 int err;
 unsigned char *pCommand;
 unsigned char *pResponse;

 pCommand = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];
 pResponse = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];

 if((NULL == pCommand) || (NULL == pResponse))
 {
 printf("Failed to allocate buffer\n");
 goto done;
 }

 /* Check GPIO_7_0 */
 printf("Check GPIO_7_0\n");
 *(pCommand + 0) = CMD_WRITE_GPIO_7_0;
 *(pCommand + 1) = 0XFF;
 err = BulkOutAndIn(RSP_WRITE_GPIO_7_0, pBulkOut, pCommand, pBulkIn,
pResponse);

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 47

 printf("0X%X = RSP_WRITE_GPIO_7_0\n", err);

 *(pCommand + 0) = CMD_READ_GPIO_7_0;
 err = BulkOutAndIn(RSP_READ_GPIO_7_0, pBulkOut, pCommand, pBulkIn,
pResponse);
 if(ERR_ZERO == err)
 {
 printf("GPIO_7_0: 0X%2.2X\n", *(pResponse + OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");
 }

 /* Check GPIO_15_8*/
 printf("Check GPIO_15_8\n");
 *(pCommand + 0) = CMD_WRITE_GPIO_15_8;
 *(pCommand + 1) = 0XFF;
 err = BulkOutAndIn(RSP_WRITE_GPIO_15_8, pBulkOut, pCommand, pBulkIn,
pResponse);
 printf("0X%X = RSP_WRITE_GPIO_15_8\n", err);

 *(pCommand + 0) = CMD_READ_GPIO_15_8;
 err = BulkOutAndIn(RSP_READ_GPIO_15_8, pBulkOut, pCommand, pBulkIn,
pResponse);
 if(ERR_ZERO == err)
 {
 printf("GPIO_7_0: 0X%2.2X\n", *(pResponse + OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");
 }

 /* Check GPIO_23_16*/
 printf("Check GPIO_23_16\n");
 *(pCommand + 0) = CMD_WRITE_GPIO_23_16;
 *(pCommand + 1) = 0XFF;
 err = BulkOutAndIn(RSP_WRITE_GPIO_23_16, pBulkOut, pCommand, pBulkIn,
pResponse);
 printf("0X%X = RSP_WRITE_GPIO_23_16\n", err);

 *(pCommand + 0) = CMD_READ_GPIO_23_16;
 err = BulkOutAndIn(RSP_READ_GPIO_23_16, pBulkOut, pCommand, pBulkIn,
pResponse);
 if(ERR_ZERO == err)
 {
 printf("GPIO_7_0: 0X%2.2X\n", *(pResponse + OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 48

 }

 /* Check GPIO_31_24 */
 printf("Check GPIO_31_24\n");
 *(pCommand + 0) = CMD_WRITE_GPIO_31_24;
 *(pCommand + 1) = 0XFF;
 err = BulkOutAndIn(RSP_WRITE_GPIO_31_24, pBulkOut, pCommand, pBulkIn,
pResponse);
 printf("0X%X = RSP_WRITE_GPIO_31_24\n", err);

 *(pCommand + 0) = CMD_READ_GPIO_31_24;
 err = BulkOutAndIn(RSP_READ_GPIO_31_24, pBulkOut, pCommand, pBulkIn,
pResponse);
 if(ERR_ZERO == err)
 {
 printf("GPIO_31_24: 0X%2.2X\n", *(pResponse + OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");
 }

done:
 if(pCommand)
 delete [] pCommand;

 if(pResponse)
 delete [] pResponse;
} /* CheckPorts */

void CheckPins_7_0(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn)
{
 int err;
 unsigned char pin;
 unsigned char *pCommand;
 unsigned char *pResponse;

 pCommand = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];
 pResponse = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];

 if((NULL == pCommand) || (NULL == pResponse))
 {
 printf("Failed to allocate buffer\n");
 goto done;
 }

 /* Check pins of GPIO_7_0 */
 printf("Check pins of GPIO_7_0\n");
 pin = 0x01;
 for(int j = 0; j < 9; j++)
 {
 *(pCommand + 0) = CMD_WRITE_GPIO_7_0;
 *(pCommand + 1) = ~pin;

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 49

 err = BulkOutAndIn(RSP_WRITE_GPIO_7_0, pBulkOut, pCommand,
pBulkIn, pResponse);
 printf("0X%X = RSP_WRITE_GPIO_7_0\n", err);

 *(pCommand + 0) = CMD_READ_GPIO_7_0;
 err = BulkOutAndIn(RSP_READ_GPIO_7_0, pBulkOut, pCommand,
pBulkIn, pResponse);
 if(ERR_ZERO == err)
 {
 printf("GPIO_7_0: 0X%2.2X\n", *(pResponse +
OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");
 }
 pin <<= 1;
 Sleep(1000);
 }

done:
 if(pCommand)
 delete [] pCommand;

 if(pResponse)
 delete [] pResponse;
} /* CheckPins_7_0 */

void CheckPins_15_8(CCyBulkEndPoint *pBulkOut, CCyBulkEndPoint *pBulkIn)
{
 int err;
 unsigned char pin;
 unsigned char *pCommand;
 unsigned char *pResponse;

 pCommand = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];
 pResponse = (unsigned char *) new unsigned char [SIZE_BULK_PACKET];

 if((NULL == pCommand) || (NULL == pResponse))
 {
 printf("Failed to allocate buffer\n");
 goto done;
 }

 /* Check pins of GPIO_7_0 */
 printf("Check pins of GPIO_15_8\n");
 pin = 0x01;
 for(int j = 0; j < 9; j++)
 {
 *(pCommand + 0) = CMD_WRITE_GPIO_15_8;
 *(pCommand + 1) = ~pin;
 err = BulkOutAndIn(RSP_WRITE_GPIO_15_8, pBulkOut, pCommand,
pBulkIn, pResponse);

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 50

 printf("0X%X = RSP_WRITE_GPIO_15_8\n", err);

 *(pCommand + 0) = CMD_READ_GPIO_15_8;
 err = BulkOutAndIn(RSP_READ_GPIO_15_8, pBulkOut, pCommand,
pBulkIn, pResponse);
 if(ERR_ZERO == err)
 {
 printf("GPIO_15_8: 0X%2.2X\n", *(pResponse +
OFFSET_RETURN_0));
 printf("Response Packet: ");
 for(int i = 0; i < SIZE_BULK_PACKET; i++)
 {
 printf("%2.2X ", *(pResponse + i));
 }
 printf("\n");
 }
 pin <<= 1;
 Sleep(1000);
 }

done:
 if(pCommand)
 delete [] pCommand;

 if(pResponse)
 delete [] pResponse;
} /* CheckPins_15_8 */

int BulkOutAndIn(unsigned char bResponseCode, CCyBulkEndPoint *pBulkOut,
unsigned char *pCommand, CCyBulkEndPoint *pBulkIn, unsigned char *pResponse)
{
 int err;
 LONG length;

 length = 16;
 err = pBulkOut‐>XferData(pCommand, length);
 if(!err)
 return ERR_XFER_TIMEOUT;

 err = pBulkIn‐>XferData(pResponse, length);
 if(!err)
 return ERR_XFER_TIMEOUT;

 err = CheckResponse(bResponseCode, pResponse);

 return err;
} /* BulkOutAndIn */

int CheckResponse(unsigned char bResponseCode, unsigned char *pResponse)
{
 int length;
 unsigned char checksum;

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 51

 if(bResponseCode != *(pResponse + OFFSET_RESPONSE_CODE))
 return ERR_WRONG_RESPONSE_CODE;

 checksum = 0;
 length = *(pResponse + OFFSET_LENGTH);
 if(length > SIZE_BULK_PACKET)
 return ERR_INVALID_PACKET;

 for(int i = 0; i < length; i++)
 {
 checksum += *(pResponse + i);
 }

 return((checksum)? ERR_CHECKSUM_ERROR : ERR_SUCCESS);
} /* CheckResponse */

Commell MPX24794G Programmer’s Guide

Taiwan Commate Computer Inc. 52

5 References

[1] CY8C24x94 PSoC Programmable System-on-Chip Technical Reference Manual
(TRM). Document No. 001-14463 Rev. *F.

[2] Cypress CyAPI Programmer’s Reference, Cypress Suite USB 3.4.2.

[3] Cypress CyUSB .NET DLL Programmer’s Reference, Cypress Suite USB 3.4.2.

